
Distributed Load Balancing on Graphs
Thomas Sauerwald

Outline

Introduction

Load Balancing on Hypercubes

Load Balancing on Arbitrary Graphs

Conclusions

14 Oct 2013 Distributed Load Balancing on Graphs 2

Outline

Introduction

Load Balancing on Hypercubes

Load Balancing on Arbitrary Graphs

Conclusions

14 Oct 2013 Distributed Load Balancing on Graphs 3

Load Balancing

Numerical Simulations

Traffic in Communication Network

Data Management in P2P network

Applications

network structure and load distribution unknown

node can only communicate with neighbors

Conditions

14 Oct 2013 Distributed Load Balancing on Graphs 4

Load Balancing

Numerical Simulations

Traffic in Communication Network

Data Management in P2P network

Applications

network structure and load distribution unknown

node can only communicate with neighbors

Conditions

14 Oct 2013 Distributed Load Balancing on Graphs 4

Discrete Load Balancing with Unit-Size-Token

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Discrete Load Balancing with Unit-Size-Token

For every round t = 1, 2, 3, . . .
Generate a matching
Matched vertices average load

Protocol

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Discrete Load Balancing with Unit-Size-Token

For every round t = 1, 2, 3, . . .
Generate a matching
Matched vertices average load

Protocol

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Discrete Load Balancing with Unit-Size-Token

For every round t = 1, 2, 3, . . .
Generate a matching
Matched vertices average load

Protocol

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Discrete Load Balancing with Unit-Size-Token

For every round t = 1, 2, 3, . . .
Generate a matching
Matched vertices average load

Protocol

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Discrete Load Balancing with Unit-Size-Token

For every round t = 1, 2, 3, . . .
Generate a matching
Matched vertices average load

Protocol

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Discrete Load Balancing with Unit-Size-Token

For every round t = 1, 2, 3, . . .
Generate a matching
Matched vertices average load

Protocol

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Discrete Load Balancing with Unit-Size-Token

For every round t = 1, 2, 3, . . .
Generate a matching
Matched vertices average load

Protocol

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Discrete Load Balancing with Unit-Size-Token

?

For every round t = 1, 2, 3, . . .
Generate a matching
Matched vertices average load

Protocol

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Discrete Load Balancing with Unit-Size-Token

For every round t = 1, 2, 3, . . .
Generate a matching
Matched vertices average load

Protocol

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Discrete Load Balancing with Unit-Size-Token

X Graphs’s structure and load is unknown to every node

X Nodes can only communicate with neighbors

Conditions

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Discrete Load Balancing with Unit-Size-Token

How should we generate the matchings?

14 Oct 2013 Distributed Load Balancing on Graphs 5

Communication Models

+ natural

– high communication

Diffusion

+ less communication

+ monotone

– matchings have to be specified

Matching Model

14 Oct 2013 Distributed Load Balancing on Graphs 6

Communication Models

+ natural

– high communication

Diffusion

+ less communication

+ monotone

– matchings have to be specified

Matching Model

14 Oct 2013 Distributed Load Balancing on Graphs 6

Generating Matching Using Edge Coloring

1. Take an edge coloring with c 6 maxdeg +1 colors.

2. In round r use matching induced by color class r mod c.

Balancing Circuit Model

14 Oct 2013 Distributed Load Balancing on Graphs 7

Generating Matching Using Edge Coloring

1. Take an edge coloring with c 6 maxdeg +1 colors.

2. In round r use matching induced by color class r mod c.

Balancing Circuit Model

14 Oct 2013 Distributed Load Balancing on Graphs 7

Generating Matching Using Edge Coloring

1. Take an edge coloring with c 6 maxdeg +1 colors.

2. In round r use matching induced by color class r mod c.

Balancing Circuit Model

14 Oct 2013 Distributed Load Balancing on Graphs 7

Generating Matching Using Edge Coloring

1. Take an edge coloring with c 6 maxdeg +1 colors.

2. In round r use matching induced by color class r mod c.

Balancing Circuit Model

14 Oct 2013 Distributed Load Balancing on Graphs 7

Generating Matching Using Edge Coloring

1. Take an edge coloring with c 6 maxdeg +1 colors.

2. In round r use matching induced by color class r mod c.

Balancing Circuit Model

14 Oct 2013 Distributed Load Balancing on Graphs 7

Generating Matching Using Edge Coloring

1. Take an edge coloring with c 6 maxdeg +1 colors.

2. In round r use matching induced by color class r mod c.

Balancing Circuit Model

14 Oct 2013 Distributed Load Balancing on Graphs 7

Generating Matching Using Edge Coloring

1. Take an edge coloring with c 6 maxdeg +1 colors.

2. In round r use matching induced by color class r mod c.

Balancing Circuit Model

14 Oct 2013 Distributed Load Balancing on Graphs 7

Generating Matching Using Edge Coloring

1. Take an edge coloring with c 6 maxdeg +1 colors.

2. In round r use matching induced by color class r mod c.

Balancing Circuit Model

14 Oct 2013 Distributed Load Balancing on Graphs 7

Generating Matching Using Randomization

1. First, every node becomes active (or passive) with prob. 1/2.

2. Every active node u contacts v ∈ N(u) with prob. 1
maxdeg

3. An active node contacting a passive node which is not contacted by
any other node form a pair in the matching

Random Matching (Boyd et al., 2006)

Crucial Properties:

An edge {u, v} ∈ E is included with prob. ≈ 1
maxdeg

Matchings in different rounds are generated independently

14 Oct 2013 Distributed Load Balancing on Graphs 8

Generating Matching Using Randomization

1. First, every node becomes active (or passive) with prob. 1/2.

2. Every active node u contacts v ∈ N(u) with prob. 1
maxdeg

3. An active node contacting a passive node which is not contacted by
any other node form a pair in the matching

Random Matching (Boyd et al., 2006)

Crucial Properties:

An edge {u, v} ∈ E is included with prob. ≈ 1
maxdeg

Matchings in different rounds are generated independently

14 Oct 2013 Distributed Load Balancing on Graphs 8

Generating Matching Using Randomization

A

A

P

A

P

A

A

P

1. First, every node becomes active (or passive) with prob. 1/2.

2. Every active node u contacts v ∈ N(u) with prob. 1
maxdeg

3. An active node contacting a passive node which is not contacted by
any other node form a pair in the matching

Random Matching (Boyd et al., 2006)

Crucial Properties:

An edge {u, v} ∈ E is included with prob. ≈ 1
maxdeg

Matchings in different rounds are generated independently

14 Oct 2013 Distributed Load Balancing on Graphs 8

Generating Matching Using Randomization

A

A

P

A

P

A

A

P

1. First, every node becomes active (or passive) with prob. 1/2.

2. Every active node u contacts v ∈ N(u) with prob. 1
maxdeg

3. An active node contacting a passive node which is not contacted by
any other node form a pair in the matching

Random Matching (Boyd et al., 2006)

Crucial Properties:

An edge {u, v} ∈ E is included with prob. ≈ 1
maxdeg

Matchings in different rounds are generated independently

14 Oct 2013 Distributed Load Balancing on Graphs 8

Generating Matching Using Randomization

A

A

P

A

P

A

A

P

1. First, every node becomes active (or passive) with prob. 1/2.

2. Every active node u contacts v ∈ N(u) with prob. 1
maxdeg

3. An active node contacting a passive node which is not contacted by
any other node form a pair in the matching

Random Matching (Boyd et al., 2006)

Crucial Properties:

An edge {u, v} ∈ E is included with prob. ≈ 1
maxdeg

Matchings in different rounds are generated independently

14 Oct 2013 Distributed Load Balancing on Graphs 8

Generating Matching Using Randomization

A

A

P

A

P

A

A

P

1. First, every node becomes active (or passive) with prob. 1/2.

2. Every active node u contacts v ∈ N(u) with prob. 1
maxdeg

3. An active node contacting a passive node which is not contacted by
any other node form a pair in the matching

Random Matching (Boyd et al., 2006)

Crucial Properties:

An edge {u, v} ∈ E is included with prob. ≈ 1
maxdeg

Matchings in different rounds are generated independently

14 Oct 2013 Distributed Load Balancing on Graphs 8

Generating Matching Using Randomization

A

A

P

A

P

A

A

P

1. First, every node becomes active (or passive) with prob. 1/2.

2. Every active node u contacts v ∈ N(u) with prob. 1
maxdeg

3. An active node contacting a passive node which is not contacted by
any other node form a pair in the matching

Random Matching (Boyd et al., 2006)

Crucial Properties:

An edge {u, v} ∈ E is included with prob. ≈ 1
maxdeg

Matchings in different rounds are generated independently

14 Oct 2013 Distributed Load Balancing on Graphs 8

Generating Matching Using Randomization

A

A

P

A

P

A

A

P

1. First, every node becomes active (or passive) with prob. 1/2.

2. Every active node u contacts v ∈ N(u) with prob. 1
maxdeg

3. An active node contacting a passive node which is not contacted by
any other node form a pair in the matching

Random Matching (Boyd et al., 2006)

Crucial Properties:

An edge {u, v} ∈ E is included with prob. ≈ 1
maxdeg

Matchings in different rounds are generated independently

14 Oct 2013 Distributed Load Balancing on Graphs 8

Generating Matching Using Randomization

A

A

P

A

P

A

A

P

Crucial Properties:
An edge {u, v} ∈ E is included with prob. ≈ 1

maxdeg

Matchings in different rounds are generated independently

14 Oct 2013 Distributed Load Balancing on Graphs 8

Balancing Circuit vs. Random Matching

graphs with structure (grids and
hypercubes)

edge-coloring and order may affect
convergence (dense graphs)

Balancing Circuit (Dimension Exchange)

applicable to any graph

convergence captured by the spectral
gap of the graph

Random Matching

14 Oct 2013 Distributed Load Balancing on Graphs 9

Balancing Circuit vs. Random Matching

graphs with structure (grids and
hypercubes)

edge-coloring and order may affect
convergence (dense graphs)

Balancing Circuit (Dimension Exchange)

applicable to any graph

convergence captured by the spectral
gap of the graph

Random Matching

14 Oct 2013 Distributed Load Balancing on Graphs 9

Smoothness of the Load Distribution

let x ∈ Rn be a load vector

x denotes the average load

`2-norm: ‖x − x‖2 =
√∑n

i=1(xi − x)2

makespan: maxn
i=1 xi

discrepancy: maxn
i=1 xi −minn

i=1 xi .

Metrics

14 Oct 2013 Distributed Load Balancing on Graphs 10

Smoothness of the Load Distribution

let x ∈ Rn be a load vector

x denotes the average load

`2-norm: ‖x − x‖2 =
√∑n

i=1(xi − x)2

makespan: maxn
i=1 xi

discrepancy: maxn
i=1 xi −minn

i=1 xi .

Metrics

14 Oct 2013 Distributed Load Balancing on Graphs 10

Smoothness of the Load Distribution

let x ∈ Rn be a load vector

x denotes the average load

`2-norm: ‖x − x‖2 =
√∑n

i=1(xi − x)2

makespan: maxn
i=1 xi

discrepancy: maxn
i=1 xi −minn

i=1 xi .

Metrics

14 Oct 2013 Distributed Load Balancing on Graphs 10

Random Matching in Continuous Case

Let Φt =
∑n

i=1

(
x t

i − x
)2. Then,

E
[

Φt − Φt+1
]
>

1− λ
8
· Φt ,

where λ ∈ (0, 1] is the spectral expansion.

⇒ For any initial load vector with discrepancy K , the discrepancy is at

most ε w.p. 1− n−1 after O
(

log(n· K
ε
)

1−λ

)
rounds.

Ghosh, Muthukrishnan, 1994

Speed of convergence essentially the same as for FOS diffusion

Even though load is moved only along a subset of edges, the
convergence is in terms of the global properties

Continuous case:
Well understood and rapid convergence
less realistic as tokens can be divided arbitrarily often

14 Oct 2013 Distributed Load Balancing on Graphs 11

Random Matching in Continuous Case

Let Φt =
∑n

i=1

(
x t

i − x
)2. Then,

E
[

Φt − Φt+1
]
>

1− λ
8
· Φt ,

where λ ∈ (0, 1] is the spectral expansion.

⇒ For any initial load vector with discrepancy K , the discrepancy is at

most ε w.p. 1− n−1 after O
(

log(n· K
ε
)

1−λ

)
rounds.

Ghosh, Muthukrishnan, 1994

Speed of convergence essentially the same as for FOS diffusion

Even though load is moved only along a subset of edges, the
convergence is in terms of the global properties

Continuous case:
Well understood and rapid convergence
less realistic as tokens can be divided arbitrarily often

14 Oct 2013 Distributed Load Balancing on Graphs 11

Random Matching in Continuous Case

Let Φt =
∑n

i=1

(
x t

i − x
)2. Then,

E
[

Φt − Φt+1
]
>

1− λ
8
· Φt ,

where λ ∈ (0, 1] is the spectral expansion.

⇒ For any initial load vector with discrepancy K , the discrepancy is at

most ε w.p. 1− n−1 after O
(

log(n· K
ε
)

1−λ

)
rounds.

Ghosh, Muthukrishnan, 1994

Speed of convergence essentially the same as for FOS diffusion

Even though load is moved only along a subset of edges, the
convergence is in terms of the global properties

Continuous case:
Well understood and rapid convergence
less realistic as tokens can be divided arbitrarily often

14 Oct 2013 Distributed Load Balancing on Graphs 11

Random Matching in Continuous Case

Let Φt =
∑n

i=1

(
x t

i − x
)2. Then,

E
[

Φt − Φt+1
]
>

1− λ
8
· Φt ,

where λ ∈ (0, 1] is the spectral expansion.

⇒ For any initial load vector with discrepancy K , the discrepancy is at

most ε w.p. 1− n−1 after O
(

log(n· K
ε
)

1−λ

)
rounds.

Ghosh, Muthukrishnan, 1994

Speed of convergence essentially the same as for FOS diffusion

Even though load is moved only along a subset of edges, the
convergence is in terms of the global properties

Continuous case:
Well understood and rapid convergence
less realistic as tokens can be divided arbitrarily often

14 Oct 2013 Distributed Load Balancing on Graphs 11

Random Matching in Continuous Case

Let Φt =
∑n

i=1

(
x t

i − x
)2. Then,

E
[

Φt − Φt+1
]
>

1− λ
8
· Φt ,

where λ ∈ (0, 1] is the spectral expansion.

⇒ For any initial load vector with discrepancy K , the discrepancy is at

most ε w.p. 1− n−1 after O
(

log(n· K
ε
)

1−λ

)
rounds.

Ghosh, Muthukrishnan, 1994

Speed of convergence essentially the same as for FOS diffusion

Even though load is moved only along a subset of edges, the
convergence is in terms of the global properties

Continuous case:
Well understood and rapid convergence
less realistic as tokens can be divided arbitrarily often

14 Oct 2013 Distributed Load Balancing on Graphs 11

Discrete vs. Continuous Load Balancing

What is the relation between the discrete and continuous case?

Subramannian and Scherson 1994, Ghosh, Leighton, Maggs,
Muthukrishnan, Plaxton, Rajaraman, Richa, Tarjan and Zuckerman 1995,

Lovasz and Winkler 1995, Muthukrishnan, Ghosh and Schultz 1996,
Rabani, Sinclair and Wanka 1998.

14 Oct 2013 Distributed Load Balancing on Graphs 12

Outline

Introduction

Load Balancing on Hypercubes

Load Balancing on Arbitrary Graphs

Conclusions

14 Oct 2013 Distributed Load Balancing on Graphs 13

Hypercube

d-dimensional hypercube
V = {0, 1}d , n = 2d

E = {{u, v} : u and v differ in one bit}

round i : every node communicates along
dimension i

load of communicating nodes is averaged

Dimension Exchange (Balancing Circuit)

000

001

010

011

100

101

110

111

14 Oct 2013 Distributed Load Balancing on Graphs 14

Hypercube

d-dimensional hypercube
V = {0, 1}d , n = 2d

E = {{u, v} : u and v differ in one bit}

round i : every node communicates along
dimension i

load of communicating nodes is averaged

Dimension Exchange (Balancing Circuit)

000

001

010

011

100

101

110

111

14 Oct 2013 Distributed Load Balancing on Graphs 14

Hypercube

d-dimensional hypercube
V = {0, 1}d , n = 2d

E = {{u, v} : u and v differ in one bit}

round i : every node communicates along
dimension i

load of communicating nodes is averaged

Dimension Exchange (Balancing Circuit)

000

001

010

011

100

101

110

111

14 Oct 2013 Distributed Load Balancing on Graphs 14

Hypercube

d-dimensional hypercube
V = {0, 1}d , n = 2d

E = {{u, v} : u and v differ in one bit}

round i : every node communicates along
dimension i

load of communicating nodes is averaged

Dimension Exchange (Balancing Circuit)

000

001

010

011

100

101

110

111

14 Oct 2013 Distributed Load Balancing on Graphs 14

Hypercube

d-dimensional hypercube
V = {0, 1}d , n = 2d

E = {{u, v} : u and v differ in one bit}

round i : every node communicates along
dimension i

load of communicating nodes is averaged

Dimension Exchange (Balancing Circuit)

000

001

010

011

100

101

110

111

14 Oct 2013 Distributed Load Balancing on Graphs 14

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Continuous vs. Discrete Load Balancing

5

1

3

2

2

2

4

4

3.5

1.5

3.5

3

3.5

1.5

3.5

3

3.5

2.25

3.5

2.25

3.5

2.25

3.5

2.25

2.875

2.875

2.875

2.875

2.875

2.875

2.875

2.875

perfectly balanced!

5

1

3

2

2

2

4

4

3

1

3

3

4

2

4

3

3

2

3

2

4

2

4

3

2

3

2

3

3

3

3

4

2

3

2

3

3

3

3

4

discrepancy of 2

How to minimize the gap between the discrete and continuous case?

Question

14 Oct 2013 Distributed Load Balancing on Graphs 15

Asynchronous Execution (Smoothing Networks)

Stop

14 Oct 2013 Distributed Load Balancing on Graphs 16

Maximum Discrepancy

000

001

010

011

100

101

110

111

0

1

1

2

1

2

2

3

load vector is never changed

discrepancy remains 3

(or more generally, d = log2 n)

14 Oct 2013 Distributed Load Balancing on Graphs 17

Maximum Discrepancy

000

001

010

011

100

101

110

111

0

1

1

2

1

2

2

3

load vector is never changed

discrepancy remains 3 (or more generally, d = log2 n)

14 Oct 2013 Distributed Load Balancing on Graphs 17

Maximum Discrepancy

000

001

010

011

100

101

110

111

0

1

1

2

1

2

2

3

load vector is never changed

discrepancy remains 3 (or more generally, d = log2 n)

14 Oct 2013 Distributed Load Balancing on Graphs 17

Deterministic vs. Randomized Rounding

Deterministic Rounding:

5 2

?

Randomized Rounding:

5 2

w.p. 1/2 w.p. 1/2

4 3 3 4

14 Oct 2013 Distributed Load Balancing on Graphs 18

Deterministic vs. Randomized Rounding

Deterministic Rounding:

5 2

4 3

Randomized Rounding:

5 2

w.p. 1/2 w.p. 1/2

4 3 3 4

14 Oct 2013 Distributed Load Balancing on Graphs 18

Deterministic vs. Randomized Rounding

Deterministic Rounding:

5 2

4 3

Randomized Rounding:

5 2

w.p. 1/2 w.p. 1/2

4 3 3 4

14 Oct 2013 Distributed Load Balancing on Graphs 18

Deterministic vs. Randomized Rounding

Deterministic Rounding:

5 2

4 3

Randomized Rounding:

5 2

w.p. 1/2 w.p. 1/2

4 3 3 4

14 Oct 2013 Distributed Load Balancing on Graphs 18

Deterministic vs. Randomized Rounding

Deterministic Rounding:

5 2

4 3

Randomized Rounding:

5 2

w.p. 1/2 w.p. 1/2

4 3 3 4

14 Oct 2013 Distributed Load Balancing on Graphs 18

Upper Bounds for the Hypercube

For any initial load vector, the disc. is at most log2 n after log2 n rounds.

Arbitrary Rounding (Herlihy, Tirthapura, 2006)

For any initial load vector, the discrepancy is at most O(
√

log n).

Randomized Rounding (Herlihy, Tirthapura, 2006)

For any initial load vector, the discrepancy is at most log2 log2 n + 4.
Randomized Rounding (Mavronicolas, S., 2010)

initial load distribution completely arbitrary
(but chosen oblivious to the randomized rounding)

results hold with probability at least 1− n−1

14 Oct 2013 Distributed Load Balancing on Graphs 19

Upper Bounds for the Hypercube

For any initial load vector, the disc. is at most log2 n after log2 n rounds.

Arbitrary Rounding (Herlihy, Tirthapura, 2006)

For any initial load vector, the discrepancy is at most O(
√

log n).

Randomized Rounding (Herlihy, Tirthapura, 2006)

For any initial load vector, the discrepancy is at most log2 log2 n + 4.
Randomized Rounding (Mavronicolas, S., 2010)

initial load distribution completely arbitrary
(but chosen oblivious to the randomized rounding)

results hold with probability at least 1− n−1

14 Oct 2013 Distributed Load Balancing on Graphs 19

Upper Bounds for the Hypercube

For any initial load vector, the disc. is at most log2 n after log2 n rounds.

Arbitrary Rounding (Herlihy, Tirthapura, 2006)

For any initial load vector, the discrepancy is at most O(
√

log n).

Randomized Rounding (Herlihy, Tirthapura, 2006)

For any initial load vector, the discrepancy is at most log2 log2 n + 4.
Randomized Rounding (Mavronicolas, S., 2010)

initial load distribution completely arbitrary
(but chosen oblivious to the randomized rounding)

results hold with probability at least 1− n−1

14 Oct 2013 Distributed Load Balancing on Graphs 19

Upper Bounds for the Hypercube

For any initial load vector, the disc. is at most log2 n after log2 n rounds.

Arbitrary Rounding (Herlihy, Tirthapura, 2006)

For any initial load vector, the discrepancy is at most O(
√

log n).

Randomized Rounding (Herlihy, Tirthapura, 2006)

For any initial load vector, the discrepancy is at most log2 log2 n + 4.
Randomized Rounding (Mavronicolas, S., 2010)

initial load distribution completely arbitrary
(but chosen oblivious to the randomized rounding)

results hold with probability at least 1− n−1

14 Oct 2013 Distributed Load Balancing on Graphs 19

Step 1: Expressing the Rounding Error

u v u v

x t
u =

x t−1
u + x t−1

v

2

+ et
u,v

x t
v =

x t−1
u + x t−1

v

2

− et
u,v ,

with et
u,v being the rounding error,

et
u,v = Odd(x t−1

u + x t−1
v) · Φt

u,v ,

where the Φt
u,v ∈ {−1/2,+1/2} is the (random) orientation.

et
u,v ∈ {−1/2,0,1/2} and E

[
et

u,v
]
= 0.

14 Oct 2013 Distributed Load Balancing on Graphs 20

Step 1: Expressing the Rounding Error

u v u v

x t
u =

x t−1
u + x t−1

v

2
+ et

u,v

x t
v =

x t−1
u + x t−1

v

2
− et

u,v ,

with et
u,v being the rounding error,

et
u,v = Odd(x t−1

u + x t−1
v) · Φt

u,v ,

where the Φt
u,v ∈ {−1/2,+1/2} is the (random) orientation.

et
u,v ∈ {−1/2,0,1/2} and E

[
et

u,v
]
= 0.

14 Oct 2013 Distributed Load Balancing on Graphs 20

Step 1: Expressing the Rounding Error

u v u v

x t
u =

x t−1
u + x t−1

v

2
+ et

u,v

x t
v =

x t−1
u + x t−1

v

2
− et

u,v ,

with et
u,v being the rounding error,

et
u,v = Odd(x t−1

u + x t−1
v) · Φt

u,v ,

where the Φt
u,v ∈ {−1/2,+1/2} is the (random) orientation.

et
u,v ∈ {−1/2,0,1/2} and E

[
et

u,v
]
= 0.

14 Oct 2013 Distributed Load Balancing on Graphs 20

Step 1: Expressing the Rounding Error

u v u v

x t
u =

x t−1
u + x t−1

v

2
+ et

u,v

x t
v =

x t−1
u + x t−1

v

2
− et

u,v ,

with et
u,v being the rounding error,

et
u,v = Odd(x t−1

u + x t−1
v) · Φt

u,v ,

where the Φt
u,v ∈ {−1/2,+1/2} is the (random) orientation.

et
u,v ∈ {−1/2,0,1/2} and E

[
et

u,v
]
= 0.

14 Oct 2013 Distributed Load Balancing on Graphs 20

Step 2: Solving and Analyzing the Recursion

x3
000

time

3

210

1

1
2

1
2

1
4

1
4

1
4

1
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

000

000

001

000

010

001

011

000

100

010

110

001

101

011

111

blue part essentially sum of
independent random variables

ranges decrease exponentially!

continuous part and discrete part

continuous part equals the
average load

⇒ loads are divisible, then perfectly
balanced

14 Oct 2013 Distributed Load Balancing on Graphs 21

Step 2: Solving and Analyzing the Recursion

x3
000 =

1
2

x2
000 +

1
2

x2
001 + e3

000

time

32

210

1

1
2

1
2

1
2

1
2

1
4

1
4

1
4

1
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

000

000

001

000

001

000

010

001

011

000

100

010

110

001

101

011

111

blue part essentially sum of
independent random variables

ranges decrease exponentially!

continuous part and discrete part

continuous part equals the
average load

⇒ loads are divisible, then perfectly
balanced

14 Oct 2013 Distributed Load Balancing on Graphs 21

Step 2: Solving and Analyzing the Recursion

x3
000 =

1
2

x2
000 +

1
2

x2
001 + e3

000

=
1
4

x1
000 +

1
4

x1
001 +

1
4

x1
001 +

1
4

x1
011 + e3

000 +
1
2

e2
000 +

1
2

e2
001

time

321

10

1

1
2

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

000

000

001

000

010

001

011

000

010

001

011

000

100

010

110

001

101

011

111

blue part essentially sum of
independent random variables

ranges decrease exponentially!

continuous part and discrete part

continuous part equals the
average load

⇒ loads are divisible, then perfectly
balanced

14 Oct 2013 Distributed Load Balancing on Graphs 21

Step 2: Solving and Analyzing the Recursion

x3
000 =

1
4

x1
000 +

1
4

x1
001 +

1
4

x1
001 +

1
4

x1
011 + e3

000 +
1
2

e2
000 +

1
2

e2
001

=
1
8

x0
000 +

1
8

x0
100 +

1
8

x0
010 +

1
8

x0
110 +

1
8

x0
001 +

1
8

x0
101 +

1
8

x0
011 +

1
8

x0
111

+ e3
000 +

1
2

e2
000 +

1
2

e2
001 +

1
4

e1
000 +

1
4

e1
010 +

1
4

e1
001 +

1
4

e1
011

time

3210

0

1

1
2

1
2

1
4

1
4

1
4

1
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

000

000

001

000

010

001

011

000

100

010

110

001

101

011

111

000

100

010

110

001

101

011

111

blue part essentially sum of
independent random variables

ranges decrease exponentially!

continuous part and discrete part

continuous part equals the
average load

⇒ loads are divisible, then perfectly
balanced

14 Oct 2013 Distributed Load Balancing on Graphs 21

Step 2: Solving and Analyzing the Recursion

x3
000 =

1
8

x0
000 +

1
8

x0
100 +

1
8

x0
010 +

1
8

x0
110 +

1
8

x0
001 +

1
8

x0
101 +

1
8

x0
011 +

1
8

x0
111

+e3
000 +

1
2

e2
000 +

1
2

e2
001 +

1
4

e1
000 +

1
4

e1
010 +

1
4

e1
001 +

1
4

e1
011

time

3210

1

1
2

1
2

1
4

1
4

1
4

1
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

000

000

001

000

010

001

011

000

100

010

110

001

101

011

111

blue part essentially sum of
independent random variables

ranges decrease exponentially!

continuous part and discrete part

continuous part equals the
average load

⇒ loads are divisible, then perfectly
balanced

14 Oct 2013 Distributed Load Balancing on Graphs 21

Step 2: Solving and Analyzing the Recursion

x3
000 =

1
8

x0
000 +

1
8

x0
100 +

1
8

x0
010 +

1
8

x0
110 +

1
8

x0
001 +

1
8

x0
101 +

1
8

x0
011 +

1
8

x0
111

+e3
000 +

1
2

e2
000 +

1
2

e2
001 +

1
4

e1
000 +

1
4

e1
010 +

1
4

e1
001 +

1
4

e1
011

time

3210

1

1
2

1
2

1
4

1
4

1
4

1
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

000

000

001

000

010

001

011

000

100

010

110

001

101

011

111

blue part essentially sum of
independent random variables

ranges decrease exponentially!

continuous part and discrete part

continuous part equals the
average load

⇒ loads are divisible, then perfectly
balanced

14 Oct 2013 Distributed Load Balancing on Graphs 21

Step 2: Solving and Analyzing the Recursion

x3
000 =

1
8

x0
000 +

1
8

x0
100 +

1
8

x0
010 +

1
8

x0
110 +

1
8

x0
001 +

1
8

x0
101 +

1
8

x0
011 +

1
8

x0
111

+e3
000 +

1
2

e2
000 +

1
2

e2
001 +

1
4

e1
000 +

1
4

e1
010 +

1
4

e1
001 +

1
4

e1
011

time

3210

1

1
2

1
2

1
4

1
4

1
4

1
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

000

000

001

000

010

001

011

000

100

010

110

001

101

011

111

blue part essentially sum of
independent random variables

ranges decrease exponentially!

continuous part and discrete part

continuous part equals the
average load

⇒ loads are divisible, then perfectly
balanced

14 Oct 2013 Distributed Load Balancing on Graphs 21

Step 2: Solving and Analyzing the Recursion

x3
000 =

1
8

x0
000 +

1
8

x0
100 +

1
8

x0
010 +

1
8

x0
110 +

1
8

x0
001 +

1
8

x0
101 +

1
8

x0
011 +

1
8

x0
111

+e3
000 +

1
2

e2
000 +

1
2

e2
001 +

1
4

e1
000 +

1
4

e1
010 +

1
4

e1
001 +

1
4

e1
011

time

3210

1

1
2

1
2

1
4

1
4

1
4

1
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

000

000

001

000

010

001

011

000

100

010

110

001

101

011

111

blue part essentially sum of
independent random variables

ranges decrease exponentially!

continuous part and discrete part

continuous part equals the
average load

⇒ loads are divisible, then perfectly
balanced

14 Oct 2013 Distributed Load Balancing on Graphs 21

Lower Bound for the Hypercube

For any initial load vector, the discrepancy is at most log2 log2 n + 4.
Upper Bound (Mavronicolas, S., 2010)

There are initial load vectors so that the discrepancy is at least
log2 log2 n − 2 w.p. 1− n−1.

Lower Bound (Mavronicolas, S., 2010)

14 Oct 2013 Distributed Load Balancing on Graphs 22

Lower Bound for the Hypercube

For any initial load vector, the discrepancy is at most log2 log2 n + 4.
Upper Bound (Mavronicolas, S., 2010)

There are initial load vectors so that the discrepancy is at least
log2 log2 n − 2 w.p. 1− n−1.

Lower Bound (Mavronicolas, S., 2010)

14 Oct 2013 Distributed Load Balancing on Graphs 22

Proof Idea of the Lower Bound

Initial load at i is the number of ones in the log2 log2 n + 1 lowest bits.

no balancing in the first
log2 n − log2 log2 n + 1 rounds

last log2 log2 n − 1 rounds:
≈ n

log2 n parallel subcubes

each w.p. ≈ 1√
n

discrepancy at
least log2 log2 n − 2

14 Oct 2013 Distributed Load Balancing on Graphs 23

Proof Idea of the Lower Bound

Initial load at i is the number of ones in the log2 log2 n + 1 lowest bits.

no balancing in the first
log2 n − log2 log2 n + 1 rounds

last log2 log2 n − 1 rounds:
≈ n

log2 n parallel subcubes

each w.p. ≈ 1√
n

discrepancy at
least log2 log2 n − 2

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010

0000
0001

0
2

1
1
2
0
1
1

2

1
1
2

0

1
1

0

14 Oct 2013 Distributed Load Balancing on Graphs 23

Proof Idea of the Lower Bound

Initial load at i is the number of ones in the log2 log2 n + 1 lowest bits.

no balancing in the first
log2 n − log2 log2 n + 1 rounds

last log2 log2 n − 1 rounds:
≈ n

log2 n parallel subcubes

each w.p. ≈ 1√
n

discrepancy at
least log2 log2 n − 2

0010

0000
0001

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011

1

0
1
1
2
0
1
1
2
0
1
1
2
0

2

1
1
2
0
1
1

2

1
1
2

0

1
1
0
2

1

0

14 Oct 2013 Distributed Load Balancing on Graphs 23

Proof Idea of the Lower Bound

Initial load at i is the number of ones in the log2 log2 n + 1 lowest bits.

no balancing in the first
log2 n − log2 log2 n + 1 rounds

last log2 log2 n − 1 rounds:
≈ n

log2 n parallel subcubes

each w.p. ≈ 1√
n

discrepancy at
least log2 log2 n − 2

1011

1111
1110
1101
1100

1010
1001

0111
0110
0101
0100
0011
0010

0000
0001

1000

1

2

2

1
1

0
2
1
1
0
2
1
1
0
2
1
1
0

0

0

0

1
1

2

1
0

1
2

1
1

2

1
1
2
0
1
1

2

1
1
2

0

1
1
0
2

0
1

14 Oct 2013 Distributed Load Balancing on Graphs 23

Proof Idea of the Lower Bound

Initial load at i is the number of ones in the log2 log2 n + 1 lowest bits.

no balancing in the first
log2 n − log2 log2 n + 1 rounds

last log2 log2 n − 1 rounds:
≈ n

log2 n parallel subcubes

each w.p. ≈ 1√
n

discrepancy at
least log2 log2 n − 2

1011

1111
1110
1101
1100

1010
1001

0111
0110
0101
0100
0011
0010

0000
0001

1000

1

2

2

1
1

0
2
1
1
0
2
1
1
0
2
1
1
0

0

0

0

1
1

2

1
0

1
2

1
1

2

1
1
2
0
1
1

2

1
1
2

0

1
1
0
2

0
1

14 Oct 2013 Distributed Load Balancing on Graphs 23

Proof Idea of the Lower Bound

Initial load at i is the number of ones in the log2 log2 n + 1 lowest bits.

no balancing in the first
log2 n − log2 log2 n + 1 rounds

last log2 log2 n − 1 rounds:
≈ n

log2 n parallel subcubes

each w.p. ≈ 1√
n

discrepancy at
least log2 log2 n − 2

0011
0010

0000
0001

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100 0

0
1
1
2
0
1
1
2
0
1
1
2
0

2

2

1

1
1
2
0
1
1

2

1
1
2

0

1
1
0
2

0

1
1

1

0
1

1
1
22

1
1
0

0

1
1

2

1
0

1
2 1

1
2

2

1
0

0
1
1

2

0

14 Oct 2013 Distributed Load Balancing on Graphs 23

Proof Idea of the Lower Bound

Initial load at i is the number of ones in the log2 log2 n + 1 lowest bits.

no balancing in the first
log2 n − log2 log2 n + 1 rounds

last log2 log2 n − 1 rounds:
≈ n

log2 n parallel subcubes

each w.p. ≈ 1√
n

discrepancy at
least log2 log2 n − 2

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010

0000
0001

1

0

2

2

1 2

2
1

1

1
1
1
1

0

0

0
1
1

2
0

1

1
1
2
0
1
1

2

1
1
2

0

1
1
0
2

0

0
2
1
1
0
2
1
1
0
2

1

0
1

1

0
1

1
1
22

1
1
0

0

1
1

1

2

1
0

1
2 1

1
2

1
0

2

1

1

1
1

1

14 Oct 2013 Distributed Load Balancing on Graphs 23

Improving the Lower Bound

For any initial load vector, the discrepancy is at most log2 log2 n + 4.
Upper Bound (Mavronicolas, S., 2010)

There are initial load vectors so that the discrepancy is at least
log2 log2 n − 2 w.p. 1− n−1.

Lower Bound (Mavronicolas, S., 2010)

How can we reduce the discrepancy further?

Even if the initial load at a node is chosen i.u.r. in {0, 1, . . . , n − 1}, then
the discrepancy is at least 1

2 · log2 log2 n − 2 w.p. 1− n−1.

Average Case Input (Friedrich, S., Vilenchik, 2011)

14 Oct 2013 Distributed Load Balancing on Graphs 24

Improving the Lower Bound

For any initial load vector, the discrepancy is at most log2 log2 n + 4.
Upper Bound (Mavronicolas, S., 2010)

There are initial load vectors so that the discrepancy is at least
log2 log2 n − 2 w.p. 1− n−1.

Lower Bound (Mavronicolas, S., 2010)

How can we reduce the discrepancy further?

Even if the initial load at a node is chosen i.u.r. in {0, 1, . . . , n − 1}, then
the discrepancy is at least 1

2 · log2 log2 n − 2 w.p. 1− n−1.

Average Case Input (Friedrich, S., Vilenchik, 2011)

14 Oct 2013 Distributed Load Balancing on Graphs 24

Improving the Lower Bound

For any initial load vector, the discrepancy is at most log2 log2 n + 4.
Upper Bound (Mavronicolas, S., 2010)

There are initial load vectors so that the discrepancy is at least
log2 log2 n − 2 w.p. 1− n−1.

Lower Bound (Mavronicolas, S., 2010)

How can we reduce the discrepancy further?

Even if the initial load at a node is chosen i.u.r. in {0, 1, . . . , n − 1}, then
the discrepancy is at least 1

2 · log2 log2 n − 2 w.p. 1− n−1.

Average Case Input (Friedrich, S., Vilenchik, 2011)

14 Oct 2013 Distributed Load Balancing on Graphs 24

New Attempt

rounds 0, 1, . . . , log2 n − 1

in round i communicate along dimension i

discrepancy 6 log2 log2 n + 4

Old Protocol (Mavronicolas, S., 2010)

rounds 0, 1, . . . , 3 log2 n − 1

in round i communicate along dimension i mod log n

discrepancy 6 2

New Protocol (Mavronicolas, S., 2010)

14 Oct 2013 Distributed Load Balancing on Graphs 25

New Attempt

rounds 0, 1, . . . , log2 n − 1

in round i communicate along dimension i

discrepancy 6 log2 log2 n + 4

Old Protocol (Mavronicolas, S., 2010)

rounds 0, 1, . . . , 3 log2 n − 1

in round i communicate along dimension i mod log n

discrepancy 6 2

New Protocol (Mavronicolas, S., 2010)

14 Oct 2013 Distributed Load Balancing on Graphs 25

New Attempt

rounds 0, 1, . . . , log2 n − 1

in round i communicate along dimension i

discrepancy 6 log2 log2 n + 4

Old Protocol (Mavronicolas, S., 2010)

rounds 0, 1, . . . , 3 log2 n − 1

in round i communicate along dimension i mod log n

discrepancy 6 2

New Protocol (Mavronicolas, S., 2010)

14 Oct 2013 Distributed Load Balancing on Graphs 25

Analysis
IN

P
U

T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

after the first log2 n rounds, discrepancy is at most log log2 n + 4

analysis consists of log2 log2 n + 2 phases: each phase reduces D by 1

focus on the last phase (D drops from 3 to 2)

14 Oct 2013 Distributed Load Balancing on Graphs 26

Analysis
IN

P
U

T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

after the first log2 n rounds, discrepancy is at most log log2 n + 4

analysis consists of log2 log2 n + 2 phases: each phase reduces D by 1

focus on the last phase (D drops from 3 to 2)

14 Oct 2013 Distributed Load Balancing on Graphs 26

Analysis
IN

P
U

T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

after the first log2 n rounds, discrepancy is at most log log2 n + 4

analysis consists of log2 log2 n + 2 phases: each phase reduces D by 1

focus on the last phase (D drops from 3 to 2)

14 Oct 2013 Distributed Load Balancing on Graphs 26

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Maximum-Paths

idea: keep track of the maxima in the load vector

IN
P

U
T

O
U

T
P

U
T

000

001

010

011

100

101

110

111

4

1

3

2

3

2

4

4

IN
P

U
T

O
U

T
P

U
T

3

4

1

2

3

4

3

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

3

2

3

2

4

2

4

3

IN
P

U
T

O
U

T
P

U
T

IN
P

U
T

O
U

T
P

U
T

2

3

2

3

3

3

3

4

14 Oct 2013 Distributed Load Balancing on Graphs 27

Reducing Discrepancy to 2

IN
P

U
T

O
U

T
P

U
T

HC

HC

HC

maximum path survives⇔ all inputs > max−1

these inputs are outputs of disjoint subcubes,
and: the averages of inputs to the subcubes are “good”

Pr [output > max−1] 6 1
2

Pr [path survives log n rounds] 6
(1

2

)log n

Pr [path survives 2 log n rounds] 6
(1

2

)2 log n

⇒ with prob. 1− n−1, discrepancy is 2

14 Oct 2013 Distributed Load Balancing on Graphs 28

Reducing Discrepancy to 2

IN
P

U
T

O
U

T
P

U
T

HC

HC

HC

maximum path survives⇔ all inputs > max−1

these inputs are outputs of disjoint subcubes,
and: the averages of inputs to the subcubes are “good”

Pr [output > max−1] 6 1
2

Pr [path survives log n rounds] 6
(1

2

)log n

Pr [path survives 2 log n rounds] 6
(1

2

)2 log n

⇒ with prob. 1− n−1, discrepancy is 2

14 Oct 2013 Distributed Load Balancing on Graphs 28

Reducing Discrepancy to 2

IN
P

U
T

O
U

T
P

U
T

HC

HC

HC

maximum path survives⇔ all inputs > max−1

these inputs are outputs of disjoint subcubes,
and: the averages of inputs to the subcubes are “good”

Pr [output > max−1] 6 1
2

Pr [path survives log n rounds] 6
(1

2

)log n

Pr [path survives 2 log n rounds] 6
(1

2

)2 log n

⇒ with prob. 1− n−1, discrepancy is 2

14 Oct 2013 Distributed Load Balancing on Graphs 28

Reducing Discrepancy to 2

IN
P

U
T

O
U

T
P

U
T

HC

HC

HC

maximum path survives⇔ all inputs > max−1

these inputs are outputs of disjoint subcubes,
and: the averages of inputs to the subcubes are “good”

Pr [output > max−1] 6 1
2

Pr [path survives log n rounds] 6
(1

2

)log n

Pr [path survives 2 log n rounds] 6
(1

2

)2 log n

⇒ with prob. 1− n−1, discrepancy is 2

14 Oct 2013 Distributed Load Balancing on Graphs 28

Reducing Discrepancy to 2

IN
P

U
T

O
U

T
P

U
T

HC

HC

HC

maximum path survives⇔ all inputs > max−1

these inputs are outputs of disjoint subcubes,
and: the averages of inputs to the subcubes are “good”

Pr [output > max−1] 6 1
2

Pr [path survives log n rounds] 6
(1

2

)log n

Pr [path survives 2 log n rounds] 6
(1

2

)2 log n

⇒ with prob. 1− n−1, discrepancy is 2

14 Oct 2013 Distributed Load Balancing on Graphs 28

Reducing Discrepancy to 2

IN
P

U
T

O
U

T
P

U
T

HC

HC

HC

maximum path survives⇔ all inputs > max−1

these inputs are outputs of disjoint subcubes,
and: the averages of inputs to the subcubes are “good”

Pr [output > max−1] 6 1
2

Pr [path survives log n rounds] 6
(1

2

)log n

Pr [path survives 2 log n rounds] 6
(1

2

)2 log n

⇒ with prob. 1− n−1, discrepancy is 2

14 Oct 2013 Distributed Load Balancing on Graphs 28

Reducing Discrepancy to 2

IN
P

U
T

O
U

T
P

U
T

HC

HC

HC

maximum path survives⇔ all inputs > max−1

these inputs are outputs of disjoint subcubes,
and: the averages of inputs to the subcubes are “good”

Pr [output > max−1] 6 1
2

Pr [path survives log n rounds] 6
(1

2

)log n

Pr [path survives 2 log n rounds] 6
(1

2

)2 log n

⇒ with prob. 1− n−1, discrepancy is 2

14 Oct 2013 Distributed Load Balancing on Graphs 28

Discrepancy of 1?

IN
P

U
T

3

3

2

3

3

3

3

4

"2" and "4" do independent random walks

for proper start vertices, meeting time is n − 1
⇒ achieving discrepancy of 1 needs n− 1 steps

Formally,

Pr [discrepancy is 1 after t rounds] 6
t

n − 1
.

(holds for any network and any matchings)

14 Oct 2013 Distributed Load Balancing on Graphs 29

Discrepancy of 1?

IN
P

U
T

3

3

2

3

3

3

3

4

"2" and "4" do independent random walks

for proper start vertices, meeting time is n − 1
⇒ achieving discrepancy of 1 needs n− 1 steps

Formally,

Pr [discrepancy is 1 after t rounds] 6
t

n − 1
.

(holds for any network and any matchings)

14 Oct 2013 Distributed Load Balancing on Graphs 29

Discrepancy of 1?

IN
P

U
T

3

3

2

3

3

3

3

4

"2" and "4" do independent random walks

for proper start vertices, meeting time is n − 1
⇒ achieving discrepancy of 1 needs n− 1 steps

Formally,

Pr [discrepancy is 1 after t rounds] 6
t

n − 1
.

(holds for any network and any matchings)

14 Oct 2013 Distributed Load Balancing on Graphs 29

Discrepancy of 1?

IN
P

U
T

3

3

2

3

3

3

3

4

"2" and "4" do independent random walks

for proper start vertices, meeting time is n − 1
⇒ achieving discrepancy of 1 needs n− 1 steps

Formally,

Pr [discrepancy is 1 after t rounds] 6
t

n − 1
.

(holds for any network and any matchings)

14 Oct 2013 Distributed Load Balancing on Graphs 29

Discrepancy of 1?

IN
P

U
T

3

3

2

3

3

3

3

4

"2" and "4" do independent random walks

for proper start vertices, meeting time is n − 1
⇒ achieving discrepancy of 1 needs n− 1 steps

Formally,

Pr [discrepancy is 1 after t rounds] 6
t

n − 1
.

(holds for any network and any matchings)

14 Oct 2013 Distributed Load Balancing on Graphs 29

Discrepancy of 1?

IN
P

U
T

3

3

2

3

3

3

3

4

"2" and "4" do independent random walks

for proper start vertices, meeting time is n − 1
⇒ achieving discrepancy of 1 needs n− 1 steps

Formally,

Pr [discrepancy is 1 after t rounds] 6
t

n − 1
.

(holds for any network and any matchings)

14 Oct 2013 Distributed Load Balancing on Graphs 29

Hypercube Summary

D = log2 log2 n ±Θ(1) after log2 n rounds

D = 3 after log2 n + o(log n) rounds

D = 2 after 3 log2 n rounds

D = 1 not possible in o(n) rounds

⇒ since log2 n rounds are necessary, hypercube is very
close to the optimal network

Randomized Rounding

What about general graphs?

14 Oct 2013 Distributed Load Balancing on Graphs 30

Hypercube Summary

D = log2 log2 n ±Θ(1) after log2 n rounds

D = 3 after log2 n + o(log n) rounds

D = 2 after 3 log2 n rounds

D = 1 not possible in o(n) rounds

⇒ since log2 n rounds are necessary, hypercube is very
close to the optimal network

Randomized Rounding

What about general graphs?

14 Oct 2013 Distributed Load Balancing on Graphs 30

Hypercube Summary

D = log2 log2 n ±Θ(1) after log2 n rounds

D = 3 after log2 n + o(log n) rounds

D = 2 after 3 log2 n rounds

D = 1 not possible in o(n) rounds

⇒ since log2 n rounds are necessary, hypercube is very
close to the optimal network

Randomized Rounding

What about general graphs?

14 Oct 2013 Distributed Load Balancing on Graphs 30

Outline

Introduction

Load Balancing on Hypercubes

Load Balancing on Arbitrary Graphs

Conclusions

14 Oct 2013 Distributed Load Balancing on Graphs 31

Load Balancing: Results

1− λ: spectral expansion of the n-vertex regular graph

K : discrepancy of the initial load vector
all results hold with probability 1− o(1) as n→∞

For any graph, the discrepancy is O
(

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Deterministic Rounding (Rabani, Sinclair, Wanka, 1998)

In the continuous case, the time to
reach discrepancy O(1) is Θ

(
log(Kn)

1−λ

)
.This is at least the diameter of the graph!

For any graph, the discrepancy is O
(√

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Randomized Rounding (Friedrich, S., 2009)

For any graph, the discrepancy is O(1) after O
(

log(Kn)
1−λ

)
rounds.

Randomized Rounding (S., Sun, 2012)

No diff. between continuous and discrete case

14 Oct 2013 Distributed Load Balancing on Graphs 32

Load Balancing: Results

1− λ: spectral expansion of the n-vertex regular graph
K : discrepancy of the initial load vector

all results hold with probability 1− o(1) as n→∞

For any graph, the discrepancy is O
(

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Deterministic Rounding (Rabani, Sinclair, Wanka, 1998)

In the continuous case, the time to
reach discrepancy O(1) is Θ

(
log(Kn)

1−λ

)
.This is at least the diameter of the graph!

For any graph, the discrepancy is O
(√

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Randomized Rounding (Friedrich, S., 2009)

For any graph, the discrepancy is O(1) after O
(

log(Kn)
1−λ

)
rounds.

Randomized Rounding (S., Sun, 2012)

No diff. between continuous and discrete case

14 Oct 2013 Distributed Load Balancing on Graphs 32

Load Balancing: Results

1− λ: spectral expansion of the n-vertex regular graph
K : discrepancy of the initial load vector
all results hold with probability 1− o(1) as n→∞

For any graph, the discrepancy is O
(

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Deterministic Rounding (Rabani, Sinclair, Wanka, 1998)

In the continuous case, the time to
reach discrepancy O(1) is Θ

(
log(Kn)

1−λ

)
.This is at least the diameter of the graph!

For any graph, the discrepancy is O
(√

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Randomized Rounding (Friedrich, S., 2009)

For any graph, the discrepancy is O(1) after O
(

log(Kn)
1−λ

)
rounds.

Randomized Rounding (S., Sun, 2012)

No diff. between continuous and discrete case

14 Oct 2013 Distributed Load Balancing on Graphs 32

Load Balancing: Results

1− λ: spectral expansion of the n-vertex regular graph
K : discrepancy of the initial load vector
all results hold with probability 1− o(1) as n→∞

For any graph, the discrepancy is O
(

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Deterministic Rounding (Rabani, Sinclair, Wanka, 1998)

In the continuous case, the time to
reach discrepancy O(1) is Θ

(
log(Kn)

1−λ

)
.This is at least the diameter of the graph!

For any graph, the discrepancy is O
(√

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Randomized Rounding (Friedrich, S., 2009)

For any graph, the discrepancy is O(1) after O
(

log(Kn)
1−λ

)
rounds.

Randomized Rounding (S., Sun, 2012)

No diff. between continuous and discrete case

14 Oct 2013 Distributed Load Balancing on Graphs 32

Load Balancing: Results

1− λ: spectral expansion of the n-vertex regular graph
K : discrepancy of the initial load vector
all results hold with probability 1− o(1) as n→∞

For any graph, the discrepancy is O
(

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Deterministic Rounding (Rabani, Sinclair, Wanka, 1998)

In the continuous case, the time to
reach discrepancy O(1) is Θ

(
log(Kn)

1−λ

)
.

This is at least the diameter of the graph!

For any graph, the discrepancy is O
(√

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Randomized Rounding (Friedrich, S., 2009)

For any graph, the discrepancy is O(1) after O
(

log(Kn)
1−λ

)
rounds.

Randomized Rounding (S., Sun, 2012)

No diff. between continuous and discrete case

14 Oct 2013 Distributed Load Balancing on Graphs 32

Load Balancing: Results

1− λ: spectral expansion of the n-vertex regular graph
K : discrepancy of the initial load vector
all results hold with probability 1− o(1) as n→∞

For any graph, the discrepancy is O
(

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Deterministic Rounding (Rabani, Sinclair, Wanka, 1998)

In the continuous case, the time to
reach discrepancy O(1) is Θ

(
log(Kn)

1−λ

)
.

This is at least the diameter of the graph!

For any graph, the discrepancy is O
(√

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Randomized Rounding (Friedrich, S., 2009)

For any graph, the discrepancy is O(1) after O
(

log(Kn)
1−λ

)
rounds.

Randomized Rounding (S., Sun, 2012)

No diff. between continuous and discrete case

14 Oct 2013 Distributed Load Balancing on Graphs 32

Load Balancing: Results

1− λ: spectral expansion of the n-vertex regular graph
K : discrepancy of the initial load vector
all results hold with probability 1− o(1) as n→∞

For any graph, the discrepancy is O
(

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Deterministic Rounding (Rabani, Sinclair, Wanka, 1998)

In the continuous case, the time to
reach discrepancy O(1) is Θ

(
log(Kn)

1−λ

)
.This is at least the diameter of the graph!

For any graph, the discrepancy is O
(√

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Randomized Rounding (Friedrich, S., 2009)

For any graph, the discrepancy is O(1) after O
(

log(Kn)
1−λ

)
rounds.

Randomized Rounding (S., Sun, 2012)

No diff. between continuous and discrete case

14 Oct 2013 Distributed Load Balancing on Graphs 32

Load Balancing: Results

1− λ: spectral expansion of the n-vertex regular graph
K : discrepancy of the initial load vector
all results hold with probability 1− o(1) as n→∞

For any graph, the discrepancy is O
(

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Deterministic Rounding (Rabani, Sinclair, Wanka, 1998)

In the continuous case, the time to
reach discrepancy O(1) is Θ

(
log(Kn)

1−λ

)
.This is at least the diameter of the graph!

For any graph, the discrepancy is O
(√

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Randomized Rounding (Friedrich, S., 2009)

For any graph, the discrepancy is O(1) after O
(

log(Kn)
1−λ

)
rounds.

Randomized Rounding (S., Sun, 2012)

No diff. between continuous and discrete case

14 Oct 2013 Distributed Load Balancing on Graphs 32

Load Balancing: Results

1− λ: spectral expansion of the n-vertex regular graph
K : discrepancy of the initial load vector
all results hold with probability 1− o(1) as n→∞

For any graph, the discrepancy is O
(

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Deterministic Rounding (Rabani, Sinclair, Wanka, 1998)

In the continuous case, the time to
reach discrepancy O(1) is Θ

(
log(Kn)

1−λ

)
.This is at least the diameter of the graph!

For any graph, the discrepancy is O
(√

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Randomized Rounding (Friedrich, S., 2009)

For any graph, the discrepancy is O(1) after O
(

log(Kn)
1−λ

)
rounds.

Randomized Rounding (S., Sun, 2012)

No diff. between continuous and discrete case

14 Oct 2013 Distributed Load Balancing on Graphs 32

Load Balancing: Results

1− λ: spectral expansion of the n-vertex regular graph
K : discrepancy of the initial load vector
all results hold with probability 1− o(1) as n→∞

For any graph, the discrepancy is O
(

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Deterministic Rounding (Rabani, Sinclair, Wanka, 1998)

In the continuous case, the time to
reach discrepancy O(1) is Θ

(
log(Kn)

1−λ

)
.

This is at least the diameter of the graph!

For any graph, the discrepancy is O
(√

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Randomized Rounding (Friedrich, S., 2009)

For any graph, the discrepancy is O(1) after O
(

log(Kn)
1−λ

)
rounds.

Randomized Rounding (S., Sun, 2012)

No diff. between continuous and discrete case

14 Oct 2013 Distributed Load Balancing on Graphs 32

Load Balancing: Results

1− λ: spectral expansion of the n-vertex regular graph
K : discrepancy of the initial load vector
all results hold with probability 1− o(1) as n→∞

For any graph, the discrepancy is O
(

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Deterministic Rounding (Rabani, Sinclair, Wanka, 1998)

In the continuous case, the time to
reach discrepancy O(1) is Θ

(
log(Kn)

1−λ

)
.This is at least the diameter of the graph!

For any graph, the discrepancy is O
(√

log n
1−λ

)
after O

(
log(Kn)

1−λ

)
rounds.

Randomized Rounding (Friedrich, S., 2009)

For any graph, the discrepancy is O(1) after O
(

log(Kn)
1−λ

)
rounds.

Randomized Rounding (S., Sun, 2012)

No diff. between continuous and discrete case

14 Oct 2013 Distributed Load Balancing on Graphs 32

Analyzing Recursion

x t
u

t

t − 1t − 2t − 3t − 4

1

1
2

1
2

1
2

1
4

1
4

3
8

3
8

1
4

3
16

3
8

3
16

1
8

1
8

u

u

v

u

v

y

u

v

y

u

v

r

y

z

continuous part and deviation

coefficients of x t converge

coefficients of e’s keep track of this
convergence

 deviation part dominated by
N (0, 2)

First Result:
O(
√

log n) bound on the discrepancy

14 Oct 2013 Distributed Load Balancing on Graphs 33

Analyzing Recursion

x t
u =

1
2

x t−1
u +

1
2

x t−1
v + et−1

u,v

tt − 1

t − 1t − 2t − 3t − 4

1

1
2

1
2

1
2

1
2

1
2

1
4

1
4

3
8

3
8

1
4

3
16

3
8

3
16

1
8

1
8

u

u

v

u

v

u

v

y

u

v

y

u

v

r

y

z

continuous part and deviation

coefficients of x t converge

coefficients of e’s keep track of this
convergence

 deviation part dominated by
N (0, 2)

First Result:
O(
√

log n) bound on the discrepancy

14 Oct 2013 Distributed Load Balancing on Graphs 33

Analyzing Recursion

x t
u =

1
2

x t−1
u +

1
2

x t−1
v + et−1

u,v

=
1
2

x t−2
u +

1
4

x t−2
v +

1
4

x t−2
y + et−1

u,v +
1
2

et−2
v,y

tt − 1t − 2

t − 2t − 3t − 4

1

1
2

1
2

1
2

1
4

1
4

1
2

1
4

1
4

3
8

3
8

1
4

3
16

3
8

3
16

1
8

1
8

u

u

v

u

v

y

u

v

y

u

v

y

u

v

r

y

z

continuous part and deviation

coefficients of x t converge

coefficients of e’s keep track of this
convergence

 deviation part dominated by
N (0, 2)

First Result:
O(
√

log n) bound on the discrepancy

14 Oct 2013 Distributed Load Balancing on Graphs 33

Analyzing Recursion

x t
u =

1
2

x t−2
u +

1
4

x t−2
v +

1
4

x t−2
y + et−1

u,v +
1
2

et−2
v,y

=
3
8

x t−3
u +

3
8

x t−3
v +

1
4

x t−3
y + et−1

u,v +
1
2

et−2
v,y +

1
2

et−3
u,v −

1
4

et−3
u,v

tt − 1t − 2t − 3

t − 3t − 4

1

1
2

1
2

1
2

1
4

1
4

3
8

3
8

1
4

3
8

3
8

1
4

3
16

3
8

3
16

1
8

1
8

u

u

v

u

v

y

u

v

y

u

v

y

u

v

r

y

z

continuous part and deviation

coefficients of x t converge

coefficients of e’s keep track of this
convergence

 deviation part dominated by
N (0, 2)

First Result:
O(
√

log n) bound on the discrepancy

14 Oct 2013 Distributed Load Balancing on Graphs 33

Analyzing Recursion

x t
u =

3
8

x t−3
u +

3
8

x t−3
v +

1
4

x t−3
y + et−1

u,v +
1
2

et−2
v,y +

1
2

et−3
u,v −

1
4

et−3
u,v

=
3
16

x t−4
r +

3
16

x t−4
u +

3
8

x t−4
v +

1
8

x t−4
y +

1
8

x t−4
z

+ et−1
u,v +

1
2

et−2
v,y +

1
2

et−3
u,v −

1
4

et−3
u,v +

3
8

et−4
r,u +

1
4

et−4
y,z

tt − 1t − 2t − 3t − 4

t − 4

1

1
2

1
2

1
2

1
4

1
4

3
8

3
8

1
4

3
16

3
8

3
16

1
8

1
8

3
16

3
8

3
16

1
8

1
8

u

u

v

u

v

y

u

v

y

u

v

r

y

z

u

v

r

y

z

continuous part and deviation

coefficients of x t converge

coefficients of e’s keep track of this
convergence

 deviation part dominated by
N (0, 2)

First Result:
O(
√

log n) bound on the discrepancy

14 Oct 2013 Distributed Load Balancing on Graphs 33

Analyzing Recursion

x t
u =

3
16

x t−4
r +

3
16

x t−4
u +

3
8

x t−4
v +

1
8

x t−4
y +

1
8

x t−4
z

+ et−1
u,v +

1
2

et−2
v,y +

1
2

et−3
u,v −

1
4

et−3
u,v +

3
8

et−4
r,u +

1
4

et−4
y,z

tt − 1t − 2t − 3t − 4

1

1
2

1
2

1
2

1
4

1
4

3
8

3
8

1
4

3
16

3
8

3
16

1
8

1
8

u

u

v

u

v

y

u

v

y

u

v

r

y

z

continuous part and deviation

coefficients of x t converge

coefficients of e’s keep track of this
convergence

 deviation part dominated by
N (0, 2)

First Result:
O(
√

log n) bound on the discrepancy

14 Oct 2013 Distributed Load Balancing on Graphs 33

Analyzing Recursion

x t
u =

3
16

x t−4
r +

3
16

x t−4
u +

3
8

x t−4
v +

1
8

x t−4
y +

1
8

x t−4
z

+ et−1
u,v +

1
2

et−2
v,y +

1
2

et−3
u,v −

1
4

et−3
u,v +

3
8

et−4
r,u +

1
4

et−4
y,z

tt − 1t − 2t − 3t − 4

1

1
2

1
2

1
2

1
4

1
4

3
8

3
8

1
4

3
16

3
8

3
16

1
8

1
8

u

u

v

u

v

y

u

v

y

u

v

r

y

z

continuous part and deviation

coefficients of x t converge

coefficients of e’s keep track of this
convergence

 deviation part dominated by
N (0, 2)

First Result:
O(
√

log n) bound on the discrepancy

14 Oct 2013 Distributed Load Balancing on Graphs 33

Analyzing Recursion

x t
u =

3
16

x t−4
r +

3
16

x t−4
u +

3
8

x t−4
v +

1
8

x t−4
y +

1
8

x t−4
z

+ 1et−1
u,v +

1
2

et−2
v,y +

1
2

et−3
u,v −

1
4

et−3
u,v +

3
8

et−4
r,u +

1
4

et−4
y,z

tt − 1t − 2t − 3t − 4

1

1
2

1
2

1
2

1
4

1
4

3
8

3
8

1
4

3
16

3
8

3
16

1
8

1
8

u

u

v

u

v

y

u

v

y

u

v

r

y

z

continuous part and deviation

coefficients of x t converge

coefficients of e’s keep track of this
convergence

 deviation part dominated by
N (0, 2)

First Result:
O(
√

log n) bound on the discrepancy

14 Oct 2013 Distributed Load Balancing on Graphs 33

Analyzing Recursion

x t
u =

3
16

x t−4
r +

3
16

x t−4
u +

3
8

x t−4
v +

1
8

x t−4
y +

1
8

x t−4
z

+ 1et−1
u,v +

1
2

et−2
v,y +

1
2

et−3
u,v −

1
4

et−3
u,v +

3
8

et−4
r,u +

1
4

et−4
y,z

tt − 1t − 2t − 3t − 4

1

1
2

1
2

1
2

1
4

1
4

3
8

3
8

1
4

3
16

3
8

3
16

1
8

1
8

u

u

v

u

v

y

u

v

y

u

v

r

y

z

continuous part and deviation

coefficients of x t converge

coefficients of e’s keep track of this
convergence

 deviation part dominated by
N (0, 2)

First Result:
O(
√

log n) bound on the discrepancy

14 Oct 2013 Distributed Load Balancing on Graphs 33

Analyzing Recursion

x t
u =

3
16

x t−4
r +

3
16

x t−4
u +

3
8

x t−4
v +

1
8

x t−4
y +

1
8

x t−4
z

+ 1et−1
u,v +

1
2

et−2
v,y +

1
2

et−3
u,v −

1
4

et−3
u,v +

3
8

et−4
r,u +

1
4

et−4
y,z

tt − 1t − 2t − 3t − 4

1

1
2

1
2

1
2

1
4

1
4

3
8

3
8

1
4

3
16

3
8

3
16

1
8

1
8

u

u

v

u

v

y

u

v

y

u

v

r

y

z

continuous part and deviation

coefficients of x t converge

coefficients of e’s keep track of this
convergence

 deviation part dominated by
N (0, 2)

First Result:
O(
√

log n) bound on the discrepancy

14 Oct 2013 Distributed Load Balancing on Graphs 33

Step 1: Token Movements as Random Walks

t1 u v

wt2

Pr [blue token on w] = M[t1,t2]
u,w , Pr [red token on w] = M[t1,t2]

v,w

Pr [blue and red token are on w] 6 M[t1,t2]
u,w ·M[t1,t2]

v,w

Negative Correlation

Allows use of Chernoff bounds for independent r.v.’s

Fewer tokens yields better concentration

14 Oct 2013 Distributed Load Balancing on Graphs 34

Step 1: Token Movements as Random Walks

t1 u v

wt2

Pr [blue token on w] = M[t1,t2]
u,w , Pr [red token on w] = M[t1,t2]

v,w

Pr [blue and red token are on w] 6 M[t1,t2]
u,w ·M[t1,t2]

v,w

Negative Correlation

Allows use of Chernoff bounds for independent r.v.’s

Fewer tokens yields better concentration

14 Oct 2013 Distributed Load Balancing on Graphs 34

Step 1: Token Movements as Random Walks

t1 u v

wt2

Pr [blue token on w] = M[t1,t2]
u,w , Pr [red token on w] = M[t1,t2]

v,w

Pr [blue and red token are on w] 6 M[t1,t2]
u,w ·M[t1,t2]

v,w

Negative Correlation

Allows use of Chernoff bounds for independent r.v.’s

Fewer tokens yields better concentration

14 Oct 2013 Distributed Load Balancing on Graphs 34

Step 1: Token Movements as Random Walks

t1 u v

wt2

Pr [blue token on w] = M[t1,t2]
u,w , Pr [red token on w] = M[t1,t2]

v,w

Pr [blue and red token are on w] 6 M[t1,t2]
u,w ·M[t1,t2]

v,w

Negative Correlation

Allows use of Chernoff bounds for independent r.v.’s

Fewer tokens yields better concentration

14 Oct 2013 Distributed Load Balancing on Graphs 34

Step 1: Token Movements as Random Walks

t1 u v

wt2

Pr [blue token on w] = M[t1,t2]
u,w , Pr [red token on w] = M[t1,t2]

v,w

Pr [blue and red token are on w] 6 M[t1,t2]
u,w ·M[t1,t2]

v,w

Negative Correlation

Allows use of Chernoff bounds for independent r.v.’s

Fewer tokens yields better concentration

14 Oct 2013 Distributed Load Balancing on Graphs 34

Step 2: Sparsification of the Load Vector

vertex

lo
ad

max

x

x +
√

log n

Number of tokens above red line 6 n · exp(−
√

log n)

Number of tokens above red line 6 n · exp(−
√

log n)

x + 2
√

log n

number of tokens above red line 6 n ·exp(−
√

log n ·
√

log n)

14 Oct 2013 Distributed Load Balancing on Graphs 35

Step 2: Sparsification of the Load Vector

vertex

lo
ad

max

x

x +
√

log n

Number of tokens above red line 6 n · exp(−
√

log n)

Number of tokens above red line 6 n · exp(−
√

log n)

x + 2
√

log n

number of tokens above red line 6 n ·exp(−
√

log n ·
√

log n)

14 Oct 2013 Distributed Load Balancing on Graphs 35

Step 2: Sparsification of the Load Vector

vertex

lo
ad

max

x

x +
√

log n

Number of tokens above red line 6 n · exp(−
√

log n)

Number of tokens above red line 6 n · exp(−
√

log n)

x + 2
√

log n

number of tokens above red line 6 n ·exp(−
√

log n ·
√

log n)

14 Oct 2013 Distributed Load Balancing on Graphs 35

Step 2: Sparsification of the Load Vector

vertex

lo
ad

max

x

x +
√

log n

Number of tokens above red line 6 n · exp(−
√

log n)

Number of tokens above red line 6 n · exp(−
√

log n)

x + 2
√

log n

number of tokens above red line 6 n ·exp(−
√

log n ·
√

log n)

14 Oct 2013 Distributed Load Balancing on Graphs 35

Step 2: Sparsification of the Load Vector

vertex

lo
ad

max

x

x +
√

log n

Number of tokens above red line 6 n · exp(−
√

log n)

Number of tokens above red line 6 n · exp(−
√

log n)

x + 2
√

log n

number of tokens above red line 6 n ·exp(−
√

log n ·
√

log n)

14 Oct 2013 Distributed Load Balancing on Graphs 35

Step 2: Sparsification of the Load Vector

vertex

lo
ad

max

x

x +
√

log n

Number of tokens above red line 6 n · exp(−
√

log n)Number of tokens above red line 6 n · exp(−
√

log n)

x + 2
√

log n

number of tokens above red line 6 n ·exp(−
√

log n ·
√

log n)

14 Oct 2013 Distributed Load Balancing on Graphs 35

Step 2: Sparsification of the Load Vector

vertex

lo
ad

max

x

x +
√

log n

Number of tokens above red line 6 n · exp(−
√

log n)Number of tokens above red line 6 n · exp(−
√

log n)

x + 2
√

log n

number of tokens above red line 6 n ·exp(−
√

log n ·
√

log n)

14 Oct 2013 Distributed Load Balancing on Graphs 35

Step 2: Sparsification of the Load Vector

vertex

lo
ad

max

x

x +
√

log n

Number of tokens above red line 6 n · exp(−
√

log n)Number of tokens above red line 6 n · exp(−
√

log n)

x + 2
√

log n

number of tokens above red line 6 n ·exp(−
√

log n ·
√

log n)

14 Oct 2013 Distributed Load Balancing on Graphs 35

Step 2: Sparsification of the Load Vector

vertex

lo
ad

max

x

x +
√

log n

Number of tokens above red line 6 n · exp(−
√

log n)Number of tokens above red line 6 n · exp(−
√

log n)

x + 2
√

log n

number of tokens above red line 6 n ·exp(−
√

log n ·
√

log n)

14 Oct 2013 Distributed Load Balancing on Graphs 35

Step 2: Sparsification of the Load Vector

Let ε > 0 be any value

After k iterations, number of blue
tokens is 6 n · exp(−(log n)ε·k).

Choosing k = 1
ε

yields a
maximum load of x + k · (log n)ε

lower bound on minimum load
by symmetry

x + (k − 1)(log n)ε

x + k(log n)ε

After O
(1
ε
· log(Kn)

1−λ

)
rounds, discrepancy is O((log n)ε).

After O
(

log log n · log(Kn)
1−λ

)
rounds, discrepancy is O(log log n).

Preliminary Results (also for non-regular graphs)

(Much) more work required to get constant discrepancy...

14 Oct 2013 Distributed Load Balancing on Graphs 36

Step 2: Sparsification of the Load Vector

Let ε > 0 be any value

After k iterations, number of blue
tokens is 6 n · exp(−(log n)ε·k).

Choosing k = 1
ε

yields a
maximum load of x + k · (log n)ε

lower bound on minimum load
by symmetry

x + (k − 1)(log n)ε

x + k(log n)ε

After O
(1
ε
· log(Kn)

1−λ

)
rounds, discrepancy is O((log n)ε).

After O
(

log log n · log(Kn)
1−λ

)
rounds, discrepancy is O(log log n).

Preliminary Results (also for non-regular graphs)

(Much) more work required to get constant discrepancy...

14 Oct 2013 Distributed Load Balancing on Graphs 36

Step 2: Sparsification of the Load Vector

Let ε > 0 be any value

After k iterations, number of blue
tokens is 6 n · exp(−(log n)ε·k).

Choosing k = 1
ε

yields a
maximum load of x + k · (log n)ε

lower bound on minimum load
by symmetry

x + (k − 1)(log n)ε

x + k(log n)ε

After O
(1
ε
· log(Kn)

1−λ

)
rounds, discrepancy is O((log n)ε).

After O
(

log log n · log(Kn)
1−λ

)
rounds, discrepancy is O(log log n).

Preliminary Results (also for non-regular graphs)

(Much) more work required to get constant discrepancy...

14 Oct 2013 Distributed Load Balancing on Graphs 36

Step 2: Sparsification of the Load Vector

Let ε > 0 be any value

After k iterations, number of blue
tokens is 6 n · exp(−(log n)ε·k).

Choosing k = 1
ε

yields a
maximum load of x + k · (log n)ε

lower bound on minimum load
by symmetry

x + (k − 1)(log n)ε

x + k(log n)ε

After O
(1
ε
· log(Kn)

1−λ

)
rounds, discrepancy is O((log n)ε).

After O
(

log log n · log(Kn)
1−λ

)
rounds, discrepancy is O(log log n).

Preliminary Results (also for non-regular graphs)

(Much) more work required to get constant discrepancy...

14 Oct 2013 Distributed Load Balancing on Graphs 36

Step 2: Sparsification of the Load Vector

Let ε > 0 be any value

After k iterations, number of blue
tokens is 6 n · exp(−(log n)ε·k).

Choosing k = 1
ε

yields a
maximum load of x + k · (log n)ε

lower bound on minimum load
by symmetry

x + (k − 1)(log n)ε

x + k(log n)ε

After O
(1
ε
· log(Kn)

1−λ

)
rounds, discrepancy is O((log n)ε).

After O
(

log log n · log(Kn)
1−λ

)
rounds, discrepancy is O(log log n).

Preliminary Results (also for non-regular graphs)

(Much) more work required to get constant discrepancy...

14 Oct 2013 Distributed Load Balancing on Graphs 36

Step 2: Sparsification of the Load Vector

Let ε > 0 be any value

After k iterations, number of blue
tokens is 6 n · exp(−(log n)ε·k).

Choosing k = 1
ε

yields a
maximum load of x + k · (log n)ε

lower bound on minimum load
by symmetry

x + (k − 1)(log n)ε

x + k(log n)ε

After O
(1
ε
· log(Kn)

1−λ

)
rounds, discrepancy is O((log n)ε).

After O
(

log log n · log(Kn)
1−λ

)
rounds, discrepancy is O(log log n).

Preliminary Results (also for non-regular graphs)

(Much) more work required to get constant discrepancy...

14 Oct 2013 Distributed Load Balancing on Graphs 36

Outline

Introduction

Load Balancing on Hypercubes

Load Balancing on Arbitrary Graphs

Conclusions

14 Oct 2013 Distributed Load Balancing on Graphs 37

Results

Discrepancy of log log n + Θ(1) after log2 n rounds

Discrepancy of 3 after log2 n + o(log n) rounds

Discrepancy of 2 after 3 log2 n rounds

Conclusion

Very good understanding

Since log2 n rounds are necessary, hypercube is “optimal network”

Proofs: Chernoff bounds using independence

Hypercube

Results for Random Matchings

Constant Discrepancy in O
(

log(Kn)
1−λ

)
rounds for any regular graph

Techniques

Movements of Tokens instead of rounding errors

Sparsification: Reduce general problem to sparse vectors

Arbitrary Graphs

14 Oct 2013 Distributed Load Balancing on Graphs 38

Results

Discrepancy of log log n + Θ(1) after log2 n rounds

Discrepancy of 3 after log2 n + o(log n) rounds

Discrepancy of 2 after 3 log2 n rounds

Conclusion

Very good understanding

Since log2 n rounds are necessary, hypercube is “optimal network”

Proofs: Chernoff bounds using independence

Hypercube

Results for Random Matchings

Constant Discrepancy in O
(

log(Kn)
1−λ

)
rounds for any regular graph

Techniques

Movements of Tokens instead of rounding errors

Sparsification: Reduce general problem to sparse vectors

Arbitrary Graphs

14 Oct 2013 Distributed Load Balancing on Graphs 38

Derandomization
Random Matchings Balancing Circuit Model
Randomized Rounding (Deterministic) Rounding with Constraints

Dynamic Settings
Edges of the graphs change
Jobs are processed or created during execution

Heterogenous Settings
Non-Regular Graphs
Different Weights, Different Speeds

Future Work

Thank you for your attention!

14 Oct 2013 Distributed Load Balancing on Graphs 39

Derandomization
Random Matchings Balancing Circuit Model
Randomized Rounding (Deterministic) Rounding with Constraints

Dynamic Settings
Edges of the graphs change
Jobs are processed or created during execution

Heterogenous Settings
Non-Regular Graphs
Different Weights, Different Speeds

Future Work

Thank you for your attention!

14 Oct 2013 Distributed Load Balancing on Graphs 39

Derandomization
Random Matchings Balancing Circuit Model
Randomized Rounding (Deterministic) Rounding with Constraints

Dynamic Settings
Edges of the graphs change
Jobs are processed or created during execution

Heterogenous Settings
Non-Regular Graphs
Different Weights, Different Speeds

Future Work

Thank you for your attention!

14 Oct 2013 Distributed Load Balancing on Graphs 39

Derandomization
Random Matchings Balancing Circuit Model
Randomized Rounding (Deterministic) Rounding with Constraints

Dynamic Settings
Edges of the graphs change
Jobs are processed or created during execution

Heterogenous Settings
Non-Regular Graphs
Different Weights, Different Speeds

Future Work

Thank you for your attention!

14 Oct 2013 Distributed Load Balancing on Graphs 39

	Introduction
	Load Balancing on Hypercubes
	Load Balancing on Arbitrary Graphs
	Conclusions

