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Rate of Updates in Networks  

 

 Social Networks (hundreds of millions of users)  

◦ 10 vertices per second 

◦ 200 edges per second 

 Social GPS (millions of users) 

◦ 5 vertices per second 

◦ 2,000 edges per second 

 The brain (hundred of billions of neurons) 

◦ 10,000 vertices per second 

◦ 200,000 edges per second 

 

 

 

(Estimation) 



Network Representation 

 A communication network is represented by a graph 

 Vertices have unique IDs of size O(log n) each 

 A messages traverses an edge within one round 

 Running time = number of rounds to provide a solution 

 Update time = number of rounds to update a solution 
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Model #0  Static: Network does not change  

Model #1   Dynamic single change 

Model #2   Dynamic restricted change 

Model #3   Dynamic unrestricted change 

Step-by-step 

changes 



Network Models 

Model #0  Static: Network does not change  

Model #1   Dynamic single change 

Model #2   Dynamic restricted change 

Model #3   Dynamic unrestricted change 

Model #4   Dynamic changes during execution  

Step-by-step 

changes 
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Symmetry Breaking Problems 

 Coloring 

(D+1)-vertex-coloring , (2D-1)-edge-coloring, 

defective-coloring,… 

 Maximal Independent Set (MIS) 

 Maximal Matching (MM) 
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Symmetry Breaking Problems 
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Coloring, MIS and MM belong to the class of 

 

locally-checkable problems 

 

(Local Decision Class, Fraigniaud, Korman and Peleg 2011) 



Dynamic Single Change - Coloring 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

13 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

13 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

13 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

13 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

This is a proper coloring, but is it a (D+1)-coloring? 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

Possible solution: 

    Delete all colors out of range {1,2,…,D+1}, 

    recompute solution for colorless vertices. 

If a vertex leaves “gracefully” then 

O(1)-time solution is possible 



Dynamic Single Change - MIS 
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An MIS may consist of a single vertex. 

 

Vertex removal may require recomputation for the 

entire graph. 

 

If a vertex leaves “gracefully”, it can communicate 

new solution within O(1) rounds. 



Dynamic Single Change - MIS 
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What if vertices do not leave “gracefully”? 

 

- Expected O(1)-time solution 

   Censor-hillel, Haramaty and Karnin 2016 

 

   Simulation of a greedy sequential MIS 

   with a random ordering. 

 

 



Dynamic Unrestricted Change 



Static Graphs with Partial Solution 
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Theorem: 

Suppose that we have a static algorithm for a 

locally-checkable problem on graphs with partial 

solution with time T. 

Then we have a dynamic algorithm for the 

problem with update time  T. 



Static Algorithm 

Obtaining Dynamic Algorithms 

Static Algorithm 

for 

Partial Solution 

Dynamic Algorithm 
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Static 𝑂(Δ2)-Coloring 

Linial 1987 

Running time: O(log* n). 

1. Initial n-coloring is obtained using IDs 

2. In each round the number of colors is reduced 

from 𝑘  to 𝑂(Δ2 log 𝑘). 

Very high-level description: 

𝑛 →  Δ2 log 𝑛 →  Δ2(log Δ + log log 𝑛 ) → ⋯ → Δ2 log Δ  → Δ2 
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Static 𝑂(Δ2)-Coloring 

• Each vertex constructs a list of colors using its current color 
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8, 27, 15, 17, 1 

8, 27, 23, 14, 19 8, 27, 23, 14, 19 

15, 16, 17, 23, 24 

9, 27, 23, 12, 17 

Static 𝑂(Δ2)-Coloring 

• Each vertex constructs a list of colors using its current color 

• Each list must have a color that does not appear in the 

neighbors lists 
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Static 𝑂(Δ2)-Coloring 

• Each vertex constructs a list of colors using its current color 

• Each list must have a color that does not appear in the 

neighbors lists 

This color is selected as the new color.  New coloring is proper! 
 



Implementing One Round 

𝑂 ∆3  colors → 𝑂(∆2) colors 

 

Let 𝑞 = 𝑂 ∆  be a prime,   

such that the number of colors is at most 𝑞3. 

There are 𝑞3 distinct polynomials over the field 𝑍𝑞 : 

𝑎 + 𝑏𝑥 + 𝑐𝑥2 0 ≤ 𝑎, 𝑏, 𝑐 ≤ 𝑞 − 1 

Each of the 𝑞3 colors is assigned a distinct polynomial. 
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Implementing One Round 

For each vertex: 

• At most 2 intersections 

with each neighbor 

• At most 2∆ intersections 

with all neighbors 

 

Choose 𝑞 ≥ 2∆ + 1 

 

There is 𝑡, 0 ≤ 𝑡 ≤ 𝑞 − 1: 

< 𝑡, 𝑃 𝑡 >≠< 𝑡, 𝑄 𝑡 > 

 

   for all neighbors’ 𝑄. 
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   There is 𝑡, 0 ≤ 𝑡 ≤ 𝑞 − 1: 

< 𝑡, 𝑃 𝑡 >≠< 𝑡, 𝑄 𝑡 > 

 

       for all neighbors’ 𝑄. 

< 𝑡, 𝑃 𝑡 > is the new color. 

For each pair of neighbors:  < 𝑡, 𝑃 𝑡 >≠< 𝑟, 𝑄 𝑟 > 
 

Number of colors:  𝑞2 = 𝑂(∆2). 

Implementing One Round 
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≤ 𝑑 
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Select a color 

that is not in 

their lists. 
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Using less than Δ2 Colors  

Suppose we have an orientation with out-degree 𝑑 

≤ 𝑑 

 𝑂 𝑑2 -coloring is computed in 𝑂(log∗ 𝑛) time. 

Look only on 

outgoing 

neighbors. 

Select a color 

that is not in 

their lists. 

Arboricity 𝑎 is the minimum number of forests. 

𝑂 𝑎 -orientation in 𝑂(log 𝑛) time.   Barenboim and Elkin 08. 



Orientations with Small Out-Degree 

If we have an orientation with 𝑑 ≤ ∆ , 

we can compute 𝑂(∆)-coloring in 𝑂(log∗ 𝑛) time! 

Small out-degree orientation does not always exist.                

Partition the graph into ~ Δ vertex-disjoint subgraphs, 

each subgraph with out-degree 𝑂 Δ . 

Color subgraphs one by one - 𝑂(log∗ 𝑛) time per subgraph.    
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Graph Partition 

      𝐺1                  𝐺2               𝐺3                  . . .        𝐺 Δ  

Each subgraph is properly colored. 

Problem:  monochromatic edges between subgraphs. 

Solution:  make it work in partially colored graphs. 



Coloring Partially-Colored Graphs 

≤ Δ 

𝐺𝑖 𝐺 



Each vertex may have up to Δ colored neighbors. 

Each color is a forbidden coordinate < 𝑥, 𝑓 𝑥 >. 

Problem:  The size of the field is only 𝑂( Δ). 

Solution:  

Each vertex defines 𝑂( Δ) non-intersecting polynomials.  

Then we can find a polynomial with a good coordinate. 

Barenboim 2015 

Coloring Partially-Colored Graphs 



≤ Δ 

                 𝑎𝑥 + 𝑏𝑥2 

1 + 𝑎𝑥 + 𝑏𝑥2 

2 + 𝑎𝑥 + 𝑏𝑥2 

                   … 

       𝑞 − 1 + 𝑎𝑥 + 𝑏𝑥2 
 

 Δ ≤ 𝑞 = 𝑂( Δ) 

< 𝑘, 𝑓 𝑘 > 

< 𝑝, 𝑓 𝑝 > 

< 𝑝, 𝑓 𝑝 > 

Find a polynomial 

with minimum 

number of conflicts 

Coloring Partially-Colored Graphs 



      3x + 4x 

1 + 3x + 4x 

2 + 3x + 4x 

… 
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      7x + 4x 

1 + 7x + 4x 

2 + 7x + 4x 

… 
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v 
≤ Δ 

Gi G1 Gi−1 Gi+1  

How to determine the coefficients 𝑎 and 𝑏? 

Using a helper temporary 𝑂 Δ -coloring of 𝐺𝑖 . 

Coloring Partially-Colored Graphs 



      3x + 4x 

1 + 3x + 4x 

2 + 3x + 4x 

… 

2 

2 

2 

      7x + 4x 

1 + 7x + 4x 

2 + 7x + 4x 

… 

2 

2 

2 

u 

v 
≤ Δ 

Gi G1 Gi−1 Gi+1  

Coloring Partially-Colored Graphs 



      3x + 4x 

1 + 3x + 4x 

2 + 3x + 4x 

… 

2 

2 

2 

      7x + 4x 

1 + 7x + 4x 

2 + 7x + 4x 

… 

2 

2 

2 

u 

v 
≤ Δ 

Gi G1 Gi−1 Gi+1  
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• Let 𝐺0 = (𝑉0, 𝐸0)  denote the subgraph of colored vertices 

𝐺0 

• Execute our algorithm on 𝑉\V0 , and avoid conflicts with 𝑉0. 

Coloring Partially-Colored Graphs 



Dynamic Algorithm 

In each step (addition of vertices or edges, removal of 

vertices or edges) : 

 

1. Perform local fixing to obtain a partial solution  

 

2. Invoke static algorithm for partial solution 
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Dynamic Algorithm 
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In each step (addition of vertices or edges, removal of 

vertices or edges) : 

 

1. Perform local fixing to obtain a partial solution  

 

2. Invoke static algorithm for partial solution 



Static Algorithm for List-Coloring 

Input: 

Each vertex receives as input a list of at least D+1 colors 

from a range of size D = O(D). 

Output: 

Each vertex selects a color from its list to obtain a proper 

coloring. 

{1,3,4,10,15,27} 

{1,3,4,5,10,12,13,15,27,30} 

v 

u 



Solution:   a reduction from list coloring to coloring partially-

colored graphs 

{1,3,4,10,15,27} 

{1,3,4,5,10,12,13,15,27,30} 
v 

u 

2 6 7 D . . . 

2 5 6 D . . . 

v 

u 

Add neighbors with colors that are not in the lists 

New maximum degree: at most D-1 

Static Algorithm for List-Coloring 



Conclusion 

• Static algorithms for graphs with partial solution yield 

dynamic algorithms. 

• Static algorithms for graphs with partial solution are 

known for: 

• Coloring:    ~𝑂 Δ + log∗ 𝑛  time. 

• Maximal Independent Set:    𝑂 Δ + log∗ 𝑛  time. 

• Maximal Matching:      𝑂 Δ + log∗ 𝑛  time. 

• … 

• We obtain dynamic algorithms for these problems 

with the same update time. 

Can we do better than that? 



Conclusion 

• In these dynamic settings changes occur in steps. 

• During an execution of an algorithm no changes occur. 

Can algorithms cope with changes during their execution? 




