### Symmetry Breaking in Static and Dynamic Networks

0

Leonid Barenboim Open University of Israel



#### Rate of Updates in Networks (Estimation)

#### Vertex addition/removal, edge addition/removal

- Social Networks (hundreds of millions of users)
  - 10 vertices per second
  - 200 edges per second
- Social GPS (millions of users)
  - 5 vertices per second
  - 2,000 edges per second



- The brain (hundred of billions of neurons)
  - I0,000 vertices per second
  - 200,000 edges per second



### **Network Representation**



- A communication network is represented by a graph
- Vertices have unique IDs of size O(log n) each
- A messages traverses an edge within one round
- Running time = number of rounds to provide a solution
- Update time = number of rounds to update a solution



#### **Network Models**



Model #0 Static: Network does not change

Model #1 Dynamic single change

Model #2 Dynamic restricted change

Model #3 Dynamic unrestricted change

Step-by-step changes



#### **Network Models**



Model #0 Static: Network does not change

Model #1 Dynamic single change

Model #2 Dynamic restricted change

Step-by-step changes

Model #3 Dynamic unrestricted change

Model #4 Dynamic changes during execution



#### Coloring

- Maximal Independent Set (MIS)
- Maximal Matching (MM)



#### Coloring

- Maximal Independent Set (MIS)
- Maximal Matching (MM)



#### Coloring

- Maximal Independent Set (MIS)
- Maximal Matching (MM)



#### Coloring

- Maximal Independent Set (MIS)
- Maximal Matching (MM)



Coloring, MIS and MM belong to the class of

#### locally-checkable problems

(Local Decision Class, Fraigniaud, Korman and Peleg 2011)



- Adding a vertex or an edge
- Removing a vertex or an edge



- Adding a vertex or an edge
- Removing a vertex or an edge



- Adding a vertex or an edge
- Removing a vertex or an edge



- Adding a vertex or an edge
- Removing a vertex or an edge



- Adding a vertex or an edge
- Removing a vertex or an edge

Local fixing in O(1) rounds

König and Wattenhofer 2013

- Adding a vertex or an edge
- Removing a vertex or an edge



Local fixing in O(1) rounds

König and Wattenhofer 2013

- Adding a vertex or an edge
- Removing a vertex or an edge



Local fixing in O(1) rounds

König and Wattenhofer 2013

- Adding a vertex or an edge
- Removing a vertex or an edge

This is a proper coloring, but is it a  $(\Delta + 1)$ -coloring?



Possible solution:

Delete all colors out of range  $\{1, 2, ..., \Delta+1\}$ , recompute solution for colorless vertices.

If a vertex leaves "gracefully" then O(1)-time solution is possible

# **Dynamic Single Change - MIS**



An MIS may consist of a single vertex.

Vertex removal may require recomputation for the entire graph.

If a vertex leaves "gracefully", it can communicate new solution within O(1) rounds.

# **Dynamic Single Change - MIS**



What if vertices do not leave "gracefully"?

- Expected O(1)-time solution Censor-hillel, Haramaty and Karnin 2016

Simulation of a greedy sequential MIS with a random ordering.

## **Dynamic Unrestricted Change**



#### Static Graphs with Partial Solution



#### Theorem:

Suppose that we have a static algorithm for a **locally-checkable** problem on graphs with **partial** solution with time T.

Then we have a **dynamic algorithm** for the problem with **update time T**.

#### Obtaining Dynamic Algorithms

Static Algorithm

Static Algorithm for Partial Solution

Dynamic Algorithm

#### Obtaining Dynamic Algorithms Obtaining Static Algorithms

Static Algorithm

Static Algorithm for Partial Solution Dynamic Algorithm

Static Algorithm for Partial Solution

Dynamic Algorithm

Static Algorithm

# Static $O(\Delta^2)$ -Coloring

Linial 1987

Running time: O(log\* n).

Very high-level description:

1. Initial n-coloring is obtained using IDs

2. In each round the number of colors is reduced from k to  $O(\Delta^2 \log k)$ .

 $n \ \rightarrow \ \Delta^2 \log n \ \rightarrow \ \Delta^2 (\log \Delta + \log \log n \ ) \rightarrow \cdots \rightarrow \Delta^2 \log \Delta \ \rightarrow \Delta^2$ 





• Each vertex constructs a list of colors using its current color



- Each vertex constructs a list of colors using its current color
- Each list must have a color that does not appear in the neighbors lists





- Each vertex constructs a list of colors using its current color
- Each list must have a color that does not appear in the neighbors lists

This color is selected as the new color. New coloring is proper!

Implementing One Round  $O(\Delta^3)$  colors  $\rightarrow O(\Delta^2)$  colors

Let  $q = O(\Delta)$  be a prime, such that the number of colors is at most  $q^3$ .

There are  $q^3$  distinct polynomials over the field  $Z_q$ :

$$a + bx + cx^2$$
  $0 \le a, b, c \le q - 1$ 

Each of the  $q^3$  colors is assigned a distinct polynomial.



## Implementing One Round





### Implementing One Round









For each vertex:

- At most 2 intersections with each neighbor
- At most  $2\Delta$  intersections with all neighbors

Choose  $q \ge 2\Delta + 1$ 

There is  $t, 0 \le t \le q - 1$ :  $< t, P(t) > \neq < t, Q(t) >$ 

for all neighbors' Q.

## Implementing One Round

There is  $t, 0 \le t \le q - 1$ : <  $t, P(t) > \neq < t, Q(t) >$ 

for all neighbors' Q.

< t, P(t) > is the new color.

For each pair of neighbors:  $\langle t, P(t) \rangle \neq \langle r, Q(r) \rangle$ 

Number of colors:  $q^2 = O(\Delta^2)$ .

Suppose we have an orientation with out-degree d



Suppose we have an orientation with out-degree d

Look only on outgoing neighbors. Select a color that is not in their lists.



Suppose we have an orientation with out-degree d

Look only on outgoing neighbors. Select a color that is not in their lists.



 $O(d^2)$ -coloring is computed in  $O(\log^* n)$  time.

Suppose we have an orientation with out-degree d

 $\leq d$ 

Look only on outgoing neighbors. Select a color that is not in their lists.

 $O(d^2)$ -coloring is computed in  $O(\log^* n)$  time. Arboricity *a* is the minimum number of forests.

Suppose we have an orientation with out-degree d

Look only on outgoing neighbors. Select a color that is not in their lists.



 $O(d^2)$ -coloring is computed in  $O(\log^* n)$  time. Arboricity *a* is the minimum number of forests. O(a)-orientation in  $O(\log n)$  time. Barenboim and Elkin 08.

#### **Orientations with Small Out-Degree**

If we have an orientation with  $d \le \sqrt{\Delta}$ , we can compute  $O(\Delta)$ -coloring in  $O(\log^* n)$  time!

Small out-degree orientation does not always exist.

Partition the graph into  $\sim \sqrt{\Delta}$  vertex-disjoint subgraphs, each subgraph with out-degree  $O(\sqrt{\Delta})$ .

Color subgraphs one by one -  $O(\log^* n)$  time per subgraph.  $\bigcirc$ 





Each subgraph is properly colored.



<u>Problem:</u> monochromatic edges between subgraphs. <u>Solution:</u> make it work in **partially colored** graphs.



### Coloring Partially-Colored Graphs Barenboim 2015

Each vertex may have up to  $\Delta$  colored neighbors.

Each color is a forbidden coordinate  $\langle x, f(x) \rangle$ .

<u>Problem</u>: The size of the field is only  $O(\sqrt{\Delta})$ .

#### Solution:

Each vertex defines  $O(\sqrt{\Delta})$  non-intersecting polynomials.

Then we can find a polynomial with a good coordinate.



#### **Coloring Partially-Colored Graphs** $3x + 4x^{2}$ $1 + 3x + 4x^2$ $2 + 3x + 4x^2$ $\leq \sqrt{\Delta}$ $7x + 4x^2$ $1 + 7x + 4x^2$ $2 + 7x + 4x^{2}$ $G_{i+1}$ $G_1$ $G_{i-1}$ $G_i$ How to determine the coefficients a and b?

Using a helper temporary  $O(\Delta)$ -coloring of  $G_i$ .

# **Coloring Partially-Colored Graphs**



# **Coloring Partially-Colored Graphs**





- Let  $G_0 = (V_0, E_0)$  denote the subgraph of colored vertices
- Execute our algorithm on  $V \setminus V_0$ , and avoid conflicts with  $V_0$ .

In each step (addition of vertices or edges, removal of vertices or edges) :

- 1. Perform local fixing to obtain a partial solution
- 2. Invoke static algorithm for partial solution

In each step (addition of vertices or edges, removal of vertices or edges) :

- 1. Perform local fixing to obtain a partial solution
- 2. Invoke static algorithm for partial solution



In each step (addition of vertices or edges, removal of vertices or edges) :

1. Perform local fixing to obtain a partial solution

2. Invoke static algorithm for partial solution



In each step (addition of vertices or edges, removal of vertices or edges) :

- 1. Perform local fixing to obtain a partial solution
- 2. Invoke static algorithm for partial solution



# Static Algorithm for List-Coloring

#### <u>Input:</u>

Each vertex receives as input a list of at least  $\Delta$ +1 colors from a range of size D = O( $\Delta$ ).

#### <u>Output:</u>

Each vertex selects a color from its list to obtain a proper coloring.

{1,3,4,10,15,27}

۷

{1,3,4,5,10,12,13,15,27,30}

u

# Static Algorithm for List-Coloring

<u>Solution:</u> a reduction from list coloring to coloring partiallycolored graphs



7

6

D



#### Conclusion

- Static algorithms for graphs with partial solution yield dynamic algorithms.
- Static algorithms for graphs with partial solution are known for:
  - Coloring:  $\sim O(\sqrt{\Delta} + \log^* n)$  time.
  - Maximal Independent Set:  $O(\Delta + \log^* n)$  time.
  - Maximal Matching:  $O(\Delta + \log^* n)$  time.
  - . . .
- We obtain **dynamic algorithms** for these problems with the same **update time**.

Can we do better than that?



#### Conclusion

• In these dynamic settings changes occur in steps.

• During an execution of an algorithm no changes occur.

Can algorithms cope with changes during their execution?

