
Symmetry Breaking 

 in 

 Static and Dynamic Networks 

Leonid Barenboim 

Open University of Israel 

https://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwjThsedhqPOAhVJwBQKHRfOBxcQjRwIBw&url=https://play.google.com/store/apps/details?id=com.open_university.students_area&psig=AFQjCNE-CZE39JK0G1ueatVxO4eDn9-h4g&ust=1470238174683932


Rate of Updates in Networks  

 

 Social Networks (hundreds of millions of users)  

◦ 10 vertices per second 

◦ 200 edges per second 

 Social GPS (millions of users) 

◦ 5 vertices per second 

◦ 2,000 edges per second 

 The brain (hundred of billions of neurons) 

◦ 10,000 vertices per second 

◦ 200,000 edges per second 

 

 

 

(Estimation) 



Network Representation 

 A communication network is represented by a graph 

 Vertices have unique IDs of size O(log n) each 

 A messages traverses an edge within one round 

 Running time = number of rounds to provide a solution 

 Update time = number of rounds to update a solution 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 



Network Models 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Model #0  Static: Network does not change  

Model #1   Dynamic single change 

Model #2   Dynamic restricted change 

Model #3   Dynamic unrestricted change 

Step-by-step 

changes 



Network Models 

Model #0  Static: Network does not change  

Model #1   Dynamic single change 

Model #2   Dynamic restricted change 

Model #3   Dynamic unrestricted change 

Model #4   Dynamic changes during execution  

Step-by-step 

changes 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

12 

17 

14 

15 

16 



Symmetry Breaking Problems 

 Coloring 

(D+1)-vertex-coloring , (2D-1)-edge-coloring, 

defective-coloring,… 

 Maximal Independent Set (MIS) 

 Maximal Matching (MM) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 



Symmetry Breaking Problems 

 Coloring 

(D+1)-vertex-coloring , (2D-1)-edge-coloring, 

defective-coloring,… 

 Maximal Independent Set (MIS) 

 Maximal Matching (MM) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 



Symmetry Breaking Problems 

 Coloring 

(D+1)-vertex-coloring , (2D-1)-edge-coloring, 

defective-coloring,… 

 Maximal Independent Set (MIS) 

 Maximal Matching (MM) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 



Symmetry Breaking Problems 

 Coloring 

(D+1)-vertex-coloring , (2D-1)-edge-coloring, 

defective-coloring,… 

 Maximal Independent Set (MIS) 

 Maximal Matching (MM) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 



Symmetry Breaking Problems 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Coloring, MIS and MM belong to the class of 

 

locally-checkable problems 

 

(Local Decision Class, Fraigniaud, Korman and Peleg 2011) 



Dynamic Single Change - Coloring 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

13 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

13 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

13 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

13 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

Local fixing in O(1) rounds 

König and Wattenhofer 2013 

This is a proper coloring, but is it a (D+1)-coloring? 

- Adding a vertex or an edge 

- Removing a vertex or an edge 



Dynamic Single Change - Coloring 

Possible solution: 

    Delete all colors out of range {1,2,…,D+1}, 

    recompute solution for colorless vertices. 

If a vertex leaves “gracefully” then 

O(1)-time solution is possible 



Dynamic Single Change - MIS 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

An MIS may consist of a single vertex. 

 

Vertex removal may require recomputation for the 

entire graph. 

 

If a vertex leaves “gracefully”, it can communicate 

new solution within O(1) rounds. 



Dynamic Single Change - MIS 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

What if vertices do not leave “gracefully”? 

 

- Expected O(1)-time solution 

   Censor-hillel, Haramaty and Karnin 2016 

 

   Simulation of a greedy sequential MIS 

   with a random ordering. 

 

 



Dynamic Unrestricted Change 



Static Graphs with Partial Solution 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

12 

17 

14 

15 

16 

Theorem: 

Suppose that we have a static algorithm for a 

locally-checkable problem on graphs with partial 

solution with time T. 

Then we have a dynamic algorithm for the 

problem with update time  T. 



Static Algorithm 

Obtaining Dynamic Algorithms 

Static Algorithm 

for 

Partial Solution 

Dynamic Algorithm 



Static Algorithm 

Obtaining Dynamic Algorithms 

Static Algorithm 

for 

Partial Solution 

Dynamic Algorithm 

Obtaining Static Algorithms 

Dynamic Algorithm 

Static Algorithm 

for 

Partial Solution 

Static Algorithm 



Static 𝑂(Δ2)-Coloring 

Linial 1987 

Running time: O(log* n). 

1. Initial n-coloring is obtained using IDs 

2. In each round the number of colors is reduced 

from 𝑘  to 𝑂(Δ2 log 𝑘). 

Very high-level description: 

𝑛 →  Δ2 log 𝑛 →  Δ2(log Δ + log log 𝑛 ) → ⋯ → Δ2 log Δ  → Δ2 



95 

105 

89 

105 

203 

Static 𝑂(Δ2)-Coloring 

• Each vertex constructs a list of colors using its current color 



95 

105 

89 

105 

203 
8, 27, 15, 17, 1 

8, 27, 23, 14, 19 8, 27, 23, 14, 19 

15, 16, 17, 23, 24 

9, 27, 23, 12, 17 

Static 𝑂(Δ2)-Coloring 

• Each vertex constructs a list of colors using its current color 

• Each list must have a color that does not appear in the 

neighbors lists 



12 

14 

17 

19 

17 

Static 𝑂(Δ2)-Coloring 

• Each vertex constructs a list of colors using its current color 

• Each list must have a color that does not appear in the 

neighbors lists 

This color is selected as the new color.  New coloring is proper! 
 



Implementing One Round 

𝑂 ∆3  colors → 𝑂(∆2) colors 

 

Let 𝑞 = 𝑂 ∆  be a prime,   

such that the number of colors is at most 𝑞3. 

There are 𝑞3 distinct polynomials over the field 𝑍𝑞 : 

𝑎 + 𝑏𝑥 + 𝑐𝑥2 0 ≤ 𝑎, 𝑏, 𝑐 ≤ 𝑞 − 1 

Each of the 𝑞3 colors is assigned a distinct polynomial. 



Implementing One Round 

95 

105 

89 

105 

203 



Implementing One Round 

95 

105 

89 

105 

203 



Implementing One Round 

95 

105 

89 

105 

203 



Implementing One Round 

For each vertex: 

• At most 2 intersections 

with each neighbor 

• At most 2∆ intersections 

with all neighbors 

 

Choose 𝑞 ≥ 2∆ + 1 

 

There is 𝑡, 0 ≤ 𝑡 ≤ 𝑞 − 1: 

< 𝑡, 𝑃 𝑡 >≠< 𝑡, 𝑄 𝑡 > 

 

   for all neighbors’ 𝑄. 
 

 

P 

Q 

t 



   There is 𝑡, 0 ≤ 𝑡 ≤ 𝑞 − 1: 

< 𝑡, 𝑃 𝑡 >≠< 𝑡, 𝑄 𝑡 > 

 

       for all neighbors’ 𝑄. 

< 𝑡, 𝑃 𝑡 > is the new color. 

For each pair of neighbors:  < 𝑡, 𝑃 𝑡 >≠< 𝑟, 𝑄 𝑟 > 
 

Number of colors:  𝑞2 = 𝑂(∆2). 

Implementing One Round 



Using less than Δ2 Colors  

Suppose we have an orientation with out-degree 𝑑 

≤ 𝑑 



Using less than Δ2 Colors  

Suppose we have an orientation with out-degree 𝑑 

≤ 𝑑 

Look only on 

outgoing 

neighbors. 

Select a color 

that is not in 

their lists. 



Using less than Δ2 Colors  

Suppose we have an orientation with out-degree 𝑑 

≤ 𝑑 

 𝑂 𝑑2 -coloring is computed in 𝑂(log∗ 𝑛) time. 

Look only on 

outgoing 

neighbors. 

Select a color 

that is not in 

their lists. 



Using less than Δ2 Colors  

Suppose we have an orientation with out-degree 𝑑 

≤ 𝑑 

 𝑂 𝑑2 -coloring is computed in 𝑂(log∗ 𝑛) time. 

Look only on 

outgoing 

neighbors. 

Select a color 

that is not in 

their lists. 

Arboricity 𝑎 is the minimum number of forests. 



Using less than Δ2 Colors  

Suppose we have an orientation with out-degree 𝑑 

≤ 𝑑 

 𝑂 𝑑2 -coloring is computed in 𝑂(log∗ 𝑛) time. 

Look only on 

outgoing 

neighbors. 

Select a color 

that is not in 

their lists. 

Arboricity 𝑎 is the minimum number of forests. 

𝑂 𝑎 -orientation in 𝑂(log 𝑛) time.   Barenboim and Elkin 08. 



Orientations with Small Out-Degree 

If we have an orientation with 𝑑 ≤ ∆ , 

we can compute 𝑂(∆)-coloring in 𝑂(log∗ 𝑛) time! 

Small out-degree orientation does not always exist.                

Partition the graph into ~ Δ vertex-disjoint subgraphs, 

each subgraph with out-degree 𝑂 Δ . 

Color subgraphs one by one - 𝑂(log∗ 𝑛) time per subgraph.    



Graph Partition 

      𝐺1                  𝐺2               𝐺3                  . . .        𝐺 Δ  



Graph Partition 

      𝐺1                  𝐺2               𝐺3                  . . .        𝐺 Δ  

Each subgraph is properly colored. 



Graph Partition 

      𝐺1                  𝐺2               𝐺3                  . . .        𝐺 Δ  

Each subgraph is properly colored. 



Graph Partition 

      𝐺1                  𝐺2               𝐺3                  . . .        𝐺 Δ  

Each subgraph is properly colored. 



Graph Partition 

      𝐺1                  𝐺2               𝐺3                  . . .        𝐺 Δ  

Each subgraph is properly colored. 

Problem:  monochromatic edges between subgraphs. 

Solution:  make it work in partially colored graphs. 



Coloring Partially-Colored Graphs 

≤ Δ 

𝐺𝑖 𝐺 



Each vertex may have up to Δ colored neighbors. 

Each color is a forbidden coordinate < 𝑥, 𝑓 𝑥 >. 

Problem:  The size of the field is only 𝑂( Δ). 

Solution:  

Each vertex defines 𝑂( Δ) non-intersecting polynomials.  

Then we can find a polynomial with a good coordinate. 

Barenboim 2015 

Coloring Partially-Colored Graphs 



≤ Δ 

                 𝑎𝑥 + 𝑏𝑥2 

1 + 𝑎𝑥 + 𝑏𝑥2 

2 + 𝑎𝑥 + 𝑏𝑥2 

                   … 

       𝑞 − 1 + 𝑎𝑥 + 𝑏𝑥2 
 

 Δ ≤ 𝑞 = 𝑂( Δ) 

< 𝑘, 𝑓 𝑘 > 

< 𝑝, 𝑓 𝑝 > 

< 𝑝, 𝑓 𝑝 > 

Find a polynomial 

with minimum 

number of conflicts 

Coloring Partially-Colored Graphs 



      3x + 4x 

1 + 3x + 4x 

2 + 3x + 4x 

… 

2 

2 

2 

      7x + 4x 

1 + 7x + 4x 

2 + 7x + 4x 

… 

2 

2 

2 

u 

v 
≤ Δ 

Gi G1 Gi−1 Gi+1  

How to determine the coefficients 𝑎 and 𝑏? 

Using a helper temporary 𝑂 Δ -coloring of 𝐺𝑖 . 

Coloring Partially-Colored Graphs 



      3x + 4x 

1 + 3x + 4x 

2 + 3x + 4x 

… 

2 

2 

2 

      7x + 4x 

1 + 7x + 4x 

2 + 7x + 4x 

… 

2 

2 

2 

u 

v 
≤ Δ 

Gi G1 Gi−1 Gi+1  

Coloring Partially-Colored Graphs 



      3x + 4x 

1 + 3x + 4x 

2 + 3x + 4x 

… 

2 

2 

2 

      7x + 4x 

1 + 7x + 4x 

2 + 7x + 4x 

… 

2 

2 

2 

u 

v 
≤ Δ 

Gi G1 Gi−1 Gi+1  

Coloring Partially-Colored Graphs 



• Let 𝐺0 = (𝑉0, 𝐸0)  denote the subgraph of colored vertices 

𝐺0 

• Execute our algorithm on 𝑉\V0 , and avoid conflicts with 𝑉0. 

Coloring Partially-Colored Graphs 



Dynamic Algorithm 

In each step (addition of vertices or edges, removal of 

vertices or edges) : 

 

1. Perform local fixing to obtain a partial solution  

 

2. Invoke static algorithm for partial solution 



Dynamic Algorithm 

In each step (addition of vertices or edges, removal of 

vertices or edges) : 

 

1. Perform local fixing to obtain a partial solution  

 

2. Invoke static algorithm for partial solution 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

12 

17 

14 

15 

16 



Dynamic Algorithm 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

12 

17 

14 

15 

16 

In each step (addition of vertices or edges, removal of 

vertices or edges) : 

 

1. Perform local fixing to obtain a partial solution  

 

2. Invoke static algorithm for partial solution 



Dynamic Algorithm 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

12 

17 

14 

15 

16 

In each step (addition of vertices or edges, removal of 

vertices or edges) : 

 

1. Perform local fixing to obtain a partial solution  

 

2. Invoke static algorithm for partial solution 



Static Algorithm for List-Coloring 

Input: 

Each vertex receives as input a list of at least D+1 colors 

from a range of size D = O(D). 

Output: 

Each vertex selects a color from its list to obtain a proper 

coloring. 

{1,3,4,10,15,27} 

{1,3,4,5,10,12,13,15,27,30} 

v 

u 



Solution:   a reduction from list coloring to coloring partially-

colored graphs 

{1,3,4,10,15,27} 

{1,3,4,5,10,12,13,15,27,30} 
v 

u 

2 6 7 D . . . 

2 5 6 D . . . 

v 

u 

Add neighbors with colors that are not in the lists 

New maximum degree: at most D-1 

Static Algorithm for List-Coloring 



Conclusion 

• Static algorithms for graphs with partial solution yield 

dynamic algorithms. 

• Static algorithms for graphs with partial solution are 

known for: 

• Coloring:    ~𝑂 Δ + log∗ 𝑛  time. 

• Maximal Independent Set:    𝑂 Δ + log∗ 𝑛  time. 

• Maximal Matching:      𝑂 Δ + log∗ 𝑛  time. 

• … 

• We obtain dynamic algorithms for these problems 

with the same update time. 

Can we do better than that? 



Conclusion 

• In these dynamic settings changes occur in steps. 

• During an execution of an algorithm no changes occur. 

Can algorithms cope with changes during their execution? 




