Symmetry Breaking in

Static and Dynamic Networks

Leonid Barenboim
Open University of Israel

Rate of Updates in Networks

(Estimation)
Vertex addition/removal, edge addition/removal

- Social Networks (hundreds of millions of users)
- 10 vertices per second
- 200 edges per second
- Social GPS (millions of users)
- 5 vertices per second

- 2,000 edges per second
- The brain (hundred of billions of neurons)
- 10,000 vertices per second
- 200,000 edges per second

Network Representation

- A communication network is represented by a graph
- Vertices have unique IDs of size $O(\log n)$ each
- A messages traverses an edge within one round
- Running time = number of rounds to provide a solution
- Update time = number of rounds to update a solution

Network Models

Model \#0 Static: Network does not change
Model \#1 Dynamic single change
Model \#2 Dynamic restricted change
Step-by-step
changes
Model \#3 Dynamic unrestricted change

Network Models

Model \#0 Static: Network does not change
Model \#1 Dynamic single change
Model \#2 Dynamic restricted change
Step-by-step
changes
Model \#3 Dynamic unrestricted change
Model \#4 Dynamic changes during execution

Symmetry Breaking Problems

- Coloring
($\Delta+1$)-vertex-coloring , $(2 \Delta-1)$-edge-coloring, defective-coloring,...
- Maximal Independent Set (MIS)
- Maximal Matching (MM)

Symmetry Breaking Problems

- Coloring
($\Delta+1$)-vertex-coloring , $(2 \Delta-1)$-edge-coloring, defective-coloring,...
- Maximal Independent Set (MIS)
- Maximal Matching (MM)

Symmetry Breaking Problems

- Coloring
($\Delta+1$)-vertex-coloring , (2 $\Delta-1$)-edge-coloring, defective-coloring,...
- Maximal Independent Set (MIS)
- Maximal Matching (MM)

Symmetry Breaking Problems

- Coloring
($\Delta+1$)-vertex-coloring , (2 $\Delta-1$)-edge-coloring, defective-coloring,...
- Maximal Independent Set (MIS)
- Maximal Matching (MM)

Symmetry Breaking Problems

Coloring, MIS and MM belong to the class of

locally-checkable problems

(Local Decision Class, Fraigniaud, Korman and Peleg 2011)

Dynamic Single Change - Coloring

Local fixing in $\mathrm{O}(1)$ rounds
König and Wattenhofer 2013

- Adding a vertex or an edge
- Removing a vertex or an edge

Dynamic Single Change - Coloring

Local fixing in $\mathrm{O}(1)$ rounds
König and Wattenhofer 2013

- Adding a vertex or an edge
- Removing a vertex or an edge

Dynamic Single Change - Coloring

Local fixing in $\mathrm{O}(1)$ rounds
König and Wattenhofer 2013

- Adding a vertex or an edge
- Removing a vertex or an edge

Dynamic Single Change - Coloring

Local fixing in $\mathrm{O}(1)$ rounds
König and Wattenhofer 2013

- Adding a vertex or an edge
- Removing a vertex or an edge

Dynamic Single Change - Coloring

Local fixing in $\mathrm{O}(1)$ rounds
König and Wattenhofer 2013

- Adding a vertex or an edge
- Removing a vertex or an edge

Dynamic Single Change - Coloring

Local fixing in $\mathrm{O}(1)$ rounds
König and Wattenhofer 2013

- Adding a vertex or an edge
- Removing a vertex or an edge

Dynamic Single Change - Coloring

Local fixing in $\mathrm{O}(1)$ rounds
König and Wattenhofer 2013

- Adding a vertex or an edge
- Removing a vertex or an edge

Dynamic Single Change - Coloring

Local fixing in $\mathrm{O}(1)$ rounds
König and Wattenhofer 2013

- Adding a vertex or an edge
- Removing a vertex or an edge

This is a proper coloring, but is it a $(\Delta+1)$-coloring?

Dynamic Single Change - Coloring

Possible solution:
Delete all colors out of range $\{1,2, \ldots, \Delta+1\}$, recompute solution for colorless vertices.

If a vertex leaves "gracefully" then
$\mathrm{O}(1)$-time solution is possible

Dynamic Single Change - MIS

An MIS may consist of a single vertex.
Vertex removal may require recomputation for the entire graph.

If a vertex leaves "gracefully", it can communicate new solution within $O(1)$ rounds.

Dynamic Single Change - MIS

What if vertices do not leave "gracefully"?

- Expected O(1)-time solution Censor-hillel, Haramaty and Karnin 2016

Simulation of a greedy sequential MIS with a random ordering.

Dynamic Unrestricted Change

Static Graphs with Partial Solution

Theorem:
Suppose that we have a static algorithm for a locally-checkable problem on graphs with partial solution with time T.
Then we have a dynamic algorithm for the problem with update time \mathbf{T}.

Obtaining Dynamic Algorithms

Static Algorithm

Static Algorithm for
Partial Solution

Dynamic Algorithm

Obtaining Dynamic Algorithms

Static Algorithm

Static Algorithm for
Partial Solution

Dynamic Algorithm

Dynamic Algorithm

Static Algorithm for
Partial Solution
1

Static Algorithm

Static $O\left(\Delta^{2}\right)$-Coloring

Linial I987

Running time: $\mathrm{O}\left(\log ^{*} \mathrm{n}\right)$.

Very high-level description:

1. Initial n-coloring is obtained using IDs
2. In each round the number of colors is reduced from k to $O\left(\Delta^{2} \log k\right)$.
$n \rightarrow \Delta^{2} \log n \rightarrow \Delta^{2}(\log \Delta+\log \log n) \rightarrow \cdots \rightarrow \Delta^{2} \log \Delta \rightarrow \Delta^{2}$

Static $O\left(\Delta^{2}\right)$-Coloring

- Each vertex constructs a list of colors using its current color

Static $O\left(\Delta^{2}\right)$-Coloring

- Each vertex constructs a list of colors using its current color
- Each list must have a color that does not appear in the neighbors lists

Static $O\left(\Delta^{2}\right)$-Coloring

- Each vertex constructs a list of colors using its current color
- Each list must have a color that does not appear in the neighbors lists
This color is selected as the new color. New coloring is proper!

Implementing One Round

$O\left(\Delta^{3}\right)$ colors $\rightarrow O\left(\Delta^{2}\right)$ colors

Let $q=O(\Delta)$ be a prime, such that the number of colors is at most q^{3}.

There are q^{3} distinct polynomials over the field Z_{q} :

$$
a+b x+c x^{2} \quad 0 \leq a, b, c \leq q-1
$$

Each of the q^{3} colors is assigned a distinct polynomial.

Implementing One Round

Implementing One Round

Implementing One Round

Implementing One Round

For each vertex:

- At most 2 intersections with each neighbor
- At most 2Δ intersections with all neighbors

Choose $q \geq 2 \Delta+1$

There is $t, 0 \leq t \leq q-1$:

$$
<t, P(t)>\neq<t, Q(t)>
$$

for all neighbors' Q.

Implementing One Round

There is $t, 0 \leq t \leq q-1$: $<t, P(t)>\neq<t, Q(t)>$
for all neighbors' Q.
$<t, P(t)>$ is the new color.

For each pair of neighbors: $\langle t, P(t)>\neq<r, Q(r)>$

Number of colors: $q^{2}=O\left(\Delta^{2}\right)$.

Using less than Δ^{2} Colors

Suppose we have an orientation with out-degree d

Using less than Δ^{2} Colors

Suppose we have an orientation with out-degree d

Using less than Δ^{2} Colors

Suppose we have an orientation with out-degree d

$O\left(d^{2}\right)$-coloring is computed in $O\left(\log ^{*} n\right)$ time.

Using less than Δ^{2} Colors

Suppose we have an orientation with out-degree d

$O\left(d^{2}\right)$-coloring is computed in $O\left(\log ^{*} n\right)$ time.
Arboricity a is the minimum number of forests.

Using less than Δ^{2} Colors

Suppose we have an orientation with out-degree d

$O\left(d^{2}\right)$-coloring is computed in $O\left(\log ^{*} n\right)$ time.
Arboricity a is the minimum number of forests.
$O(a)$-orientation in $O(\log n)$ time. Barenboim and Elkin 08.

Orientations with Small Out-Degree

If we have an orientation with $d \leq \sqrt{\Delta}$, we can compute $O(\Delta)$-coloring in $O\left(\log ^{*} n\right)$ time!

Small out-degree orientation does not always exist.

Partition the graph into $\sim \sqrt{\Delta}$ vertex-disjoint subgraphs, each subgraph with out-degree $O(\sqrt{\Delta})$.

Color subgraphs one by one $-O\left(\log ^{*} n\right)$ time per subgraph.

Graph Partition

Graph Partition

Each subgraph is properly colored.

Problem: monochromatic edges between subgraphs. Solution: make it work in partially colored graphs.

Coloring Partially-Colored Graphs

Coloring Partially-Colored Graphs

 Barenboim 2015Each vertex may have up to Δ colored neighbors.

Each color is a forbidden coordinate $\langle x, f(x)\rangle$.

Problem: The size of the field is only $O(\sqrt{\Delta})$.

Solution:

Each vertex defines $O(\sqrt{\Delta})$ non-intersecting polynomials.
Then we can find a polynomial with a good coordinate.

Coloring Partially-Colored Graphs

$<p, f(p)>$

Find a polynomial with minimum number of conflicts

$$
\begin{array}{r}
a x+b x^{2} \\
1+a x+b x^{2} \\
\hline 2+a x+b x^{2} \\
\cdots \\
q-1+a x+b x^{2}
\end{array}
$$

$$
\sqrt{\Delta} \leq q=O(\sqrt{\Delta})
$$

Coloring Partially-Colored Graphs

How to determine the coefficients a and b ?
Using a helper temporary $O(\Delta)$-coloring of G_{i}.

Coloring Partially-Colored Graphs

Coloring Partially-Colored Graphs

Coloring Partially-Colored Graphs

- Let $G_{0}=\left(V_{0}, E_{0}\right)$ denote the subgraph of colored vertices
- Execute our algorithm on $V \backslash \mathrm{~V}_{0}$, and avoid conflicts with V_{0}.

Dynamic Algorithm

In each step (addition of vertices or edges, removal of vertices or edges) :

1. Perform local fixing to obtain a partial solution
2. Invoke static algorithm for partial solution

Dynamic Algorithm

In each step (addition of vertices or edges, removal of vertices or edges) :

1. Perform local fixing to obtain a partial solution
2. Invoke static algorithm for partial solution

Dynamic Algorithm

In each step (addition of vertices or edges, removal of vertices or edges) :

1. Perform local fixing to obtain a partial solution
2. Invoke static algorithm for partial solution

Dynamic Algorithm

In each step (addition of vertices or edges, removal of vertices or edges) :

1. Perform local fixing to obtain a partial solution
2. Invoke static algorithm for partial solution

Static Algorithm for List-Coloring

Input:
Each vertex receives as input a list of at least $\Delta+I$ colors from a range of size $D=O(\Delta)$.

Output:

Each vertex selects a color from its list to obtain a proper coloring.
$\{1,3,4,5,10,12,13,15,27,30\}$

Static Algorithm for List-Coloring

Solution: a reduction from list coloring to coloring partiallycolored graphs

Add neighbors with colors that are not in the lists

New maximum degree: at most D-I

Conclusion

- Static algorithms for graphs with partial solution yield dynamic algorithms.
- Static algorithms for graphs with partial solution are known for:
- Coloring: $\sim O\left(\sqrt{\Delta}+\log ^{*} n\right)$ time.
- Maximal Independent Set: $O\left(\Delta+\log ^{*} n\right)$ time.
- Maximal Matching: $O\left(\Delta+\log ^{*} n\right)$ time.
- We obtain dynamic algorithms for these problems with the same update time.

Can we do better than that?

Conclusion

- In these dynamic settings changes occur in steps.
- During an execution of an algorithm no changes occur.

Can algorithms cope with changes during their execution?

Thank youb

