This file accompanies a presentation given at the 3rd workshop on Advanced Distributed Graph Algorithms in Paris on 09/26/2016. The material is not complete and deviates from the content of the original papers for sake of simpler presentation of key ideas and concepts to this particular audience.

Recent Algorithms and Lower Bounds for Global Distributed Graph Problems

Stephan Holzer

Thanks to collaborators:
Atish Das Sarma, Benjamin Dissler, Silvio Frischknecht, Liah Kor Amos Korman, Danupon Nanongkai, Gopal Pandurangan David Peleg, Nathan Pinsker, Liam Roditty, Roger Wattenhofer [STOC'11,SODA'12,PODC'12,SICOMP'12,DISC'14,OPODIS'15,Arxiv'16]

Recent Algorithms and Lower Bounds for Global Distributed Graph Problems

Stephan Holzer

Thanks to collaborators:
Atish Das Sarma, Benjamin Dissler, Silvio Frischknecht, Liah Kor Amos Korman, Danupon Nanongkai, Gopal Pandurangan David Peleg, Nathan Pinsker, Liam Roditty, Roger Wattenhofer [STOC'11,SODA'12,PODC'12,SICOMP'12,DISC'14,OPODIS'15,Arxiv'16]

Message Passing Model Graph G of n nodes

Message Passing Model Graph G of n nodes

Message Passing Model Graph G of n nodes

Message Passing Model Graph G of n nodes

Message Passing Model Graph G of n nodes

Message Passing Model

Graph G of n nodes

Limited

bandwidth
Synchronized rounds Reliable communication No faults/crashes

Local infor-
Free internal comptibtatrịns Graph is one connected component

$$
\begin{aligned}
& \text { Time complexity } \\
& \text { number of } \\
& \text { communication rounds }
\end{aligned}
$$

Distributed Computing
 A Locality-Sensitive Approach

1. Formal definition?

Throughout, we denote $\Lambda=\lceil\log \operatorname{Diam}(G)\rceil$
In a weighted graph G, let Diam ${ }^{3 n}(G)$ denote the unweighted diameter of G, i.e., the maximum unweighted distance between any two vertices of G.

Definition 2.1.2 [Radius and center]: For a vertex $v \in V$, let $\operatorname{Rad}(v, G)$ denote the distance from v to the vertex farthest away from it in the graph G :

$$
\operatorname{Rad}(v, G)=\max _{w \in \mathcal{V}}\left\{\operatorname{dist}_{G}(v, w)\right\} .
$$

Let $\operatorname{Rad}(G)$ denote the radius of the network, i.e.,

```
                                    Rad(G)= min miv {ad(v,G)}
```

A center of G is any vertex v realizing the radius of G (i.e., such that $\operatorname{Rad}(v, G)=\operatorname{Rad}(G))$. In order to simplify some of the following definitions, we avoid problems arising from 0 diameter or O-radius graphs, by defining $\operatorname{Rad}(G)=\operatorname{Diam}(G)=1$ for the single-vertex

Complexity of computing $D ? \Theta(n)$

[PODC 2012]

First part of talk:

$\Omega(\mathrm{n})$
[SODA 2012]

Networks cannot compute their diameter in sublinear time!

Diameter of a network

Diameter of this network?

Unweighted!

- Distance between two nodes = Number of hops of shortest path
- Diameter of network = Maximum distance, between any two nodes

Networks cannot compute their diameter in sublinear time!

Unweighted!

Networks cannot compute their diameter in sublinear time!

Networks cannot compute their diameter in sublinear time!

Networks cannot compute their diameter in sublinear time!

Networks cannot compute their diameter in sublinear time!

has diameter 3

Networks cannot compute their diameter in sublinear time!

has diameter 3

Networks cannot compute their diameter in sublinear time!

has diameter
2?

Networks cannot compute their diameter in sublinear time! $\quad D=2$ or 3 ?

Upper and lower row not connected on any side?

Networks cannot compute their diameter in sublinear time!
$D=2$ or 3 ?

Upper and lower row not connected on any side?

Networks cannot compute their diameter in sublinear time!

Upper and lower row not connected on any side?

Now: slightly more details

Networks cannot compute their diameter in sublinear time!

Upper and lower row not connected on any side?

Label potential edges

Networks cannot compute their diameter in sublinear time!

Upper and lower row not connected on any side?

Label potential edges

Networks cannot compute their diameter in sublinear time!

Upper and lower row not connected on any side?

Label potential edges

Networks cannot compute their diameter in sublinear time!

Upper and lower row not connected on any side?

Label potential edges

Networks cannot compute their diameter in sublinear time!

Upper and lower row not connected on any side?

Label potential edges

Networks cannot compute their diameter in sublinear time!

Upper and lower row not connected on any side?

Networks cannot compute their diameter in sublinear time!

Upper and lower row not connected on any side?

Networks cannot compute their diameter in sublinear time!

Upper and lower row not connected on any side?

Networks cannot compute their diameter in sublinear time!

Upper and lower row not connected on any side?

Networks cannot compute their diameter in sublinear time!

Upper and lower row not connected on any side?

Networks cannot compute their diameter in sublinear time!

"A and B not disjoint?"

Networks cannot compute their diameter in sublinear time! $\quad D=2$ or 3 ?

Upper and lower row not connected on any side?
Same as "A and B not disjoint?"
Communication Complexity

randomized: $\Omega\left(\mathrm{n}^{2}\right)$ bits

$\Omega(\mathrm{n})$ time

Networks cannot compute their diameter in sublinear time!

Abboud, Censor-Hillel, Khoury - DISC 2016:
Even in sparse / constant degree graphs!

Networks cannot compute their diameter in sublinear time!

Networks cannot compute their diameter in sublinear time!

APSP in O(n)

APSP in O(n)

Compute All Pairs Shortest Paths

APSP in O(n)

Compute All Pairs Shortest Paths

Knows its distance to all other nodes

APSP in O(n)

Compute All Pairs Shortest Paths

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes;

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes;

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes;

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes;

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes; O(D)

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes;
O(D)
\}

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes;
O(D)
\}

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes;
O(D)
\}

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes;
O(D)
\}

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes;
O(D)
\}

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
O(n)
compute distances to all other nodes;

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes;

Limited parallelism:
Only some nodes active.

APSP in O(n)

Compute All Pairs Shortest Paths
For each node \{
compute distances to all other nodes;

Limited parallelism:
Only some nodes active.

Wanted: All nodes active all the time!

APSP in O(n)

Compute All Pairs Shortest Paths

APSP in O(n)

Compute All Pairs Shortest Paths

APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick a root-node r;

APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. T := BFS-Tree(r);

APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. \quad := BFS-Tree(r);
3. Pebble P traverses T in preorder;

APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T in preorder;
4. If P visits node v first time\{ wait 1 timeslot; start shortest paths(v);

APSP in O(n)

APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T in preorder;
4. If P visits node v first time\{ wait 1 timeslot; start shortest paths(v);

APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. \quad := BFS-Tree(r);
3. Pebble P traverses T
in preorder;
4. If P visits node v first time\{
(u) Starts at t wait 1 timeslot; start shortest paths(v); \}

APSP in $\mathrm{O}(\mathrm{n})$

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T in preorder;
4. If P visits node v first time\{ wait 1 timeslot; start shortest paths(v); \}

APSP in $\mathrm{O}(\mathrm{n})$

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T in preorder;
4. If P visits node v first time\{ wait 1 timeslot; start shortest paths(v);

APSP in $\mathrm{O}(\mathrm{n})$

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T in preorder;
4. If P visits node v first time\{ wait 1 timeslot; start shortest paths(v);

APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T in preorder;
4. If P visits node v first time\{ wait 1 timeslot; start shortest paths(v);

APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T in preorder;
4. If P visits node v first time\{ wait 1 timeslot; start shortest paths(v); \}

Arrives at $\quad t+d(u, v)$
Arrives at $\geq t+d(u, v)$

APSP in $\mathrm{O}(\mathrm{n})$

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T in preorder;
4. If P visits node v first time\{ wait 1 timeslot; start shortest paths(v); \}

APSP in $\mathrm{O}(\mathrm{n})$

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T in preorder;
4. If P visits node v first time\{ wait 1 timeslot; start shortest paths(v); \}

APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T in preorder;
4. If P visits node v first time\{ wait 1 timeslot;
start shortest paths(v);
v never active for u and w
U. Starts at t Aatithes sametimell (u,v) Nocongestion! Arrives at $\geq t+$ R(untime: 0 ($\mathbf{n}+\mathbf{D})=\mathbf{O}(\mathbf{n})$

Complexity of computing D ? $\Theta(n)$

Sequential:

open

Extentions

Extentions

Problem	Exact	(t, 1)	(x, $1+8$)	(x,3/2-8)	(x, 3/2)	(x,3/2+8)	(x,2)
APSP	O(n)	o(n)	$\theta(\mathrm{n})$	o(n)	--	-	
eccentricity	ө(n)	ת($\left.\frac{n}{D}+D\right)$	$0\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{\pi}{2}}+\mathrm{D}\right)$		-	$\theta(0)$
diameter	$\theta(\mathrm{n})$	n($\left.\frac{n}{D}+D\right)$	$0\left(\frac{n}{D}+D\right)$	Q $\left(\sqrt{\frac{\pi}{0}+0}\right)$	$0(\sqrt{n}+D)$	O($\left(\frac{\sqrt{2}}{\frac{2}{2}}+\mathrm{D}\right)$	¢(0)
dius	$0(n)$	-	O($\frac{n}{D}+{ }^{\text {a }}$)		-	-	Ө(0)
center	$\theta(\mathrm{n})$	$\Omega\left(\frac{n}{D}+D\right)$	$0\left(\frac{n}{D}+D\right)$	$2\left(\sqrt{\frac{\pi}{n}+\infty}\right)$		-	0
p. vertices	O(n)	$\Omega\left(\frac{n}{D}+D\right)$	$0\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{\pi}{0}+\infty}\right)$	-	-	0
girth	${ }^{\text {on }}$)			$\left.\log _{9}^{p}, n\right)$)		-	

Problem	$(\mathrm{x}, 2-\mathrm{s})$	$(\mathrm{x}, 2-1 / \mathrm{g})$
girth	$\Omega\left(\frac{\sqrt{n}}{D}+\mathrm{D}\right)$	$\mathrm{O}\left(n^{2 / 3}+D \log \frac{D}{g}\right)$

Extentions

Problem	Eact	(t, 1)	(x, $1+8$)	(x,3/2-8)	(x,3/2)	(x, /2/48)	(x,2)
APSP	O(n)	o(n)	$\theta(\mathrm{n})$	o(n)	-	-	-
eccentricity	๑(n)	$\Omega\left(\frac{n}{D}+D\right)$	O $\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{0}}+0\right)$	-	-	$9(1)$
diameter	ө(n)	n($\left.\frac{n}{D}+D\right)$	$0\left(\frac{n}{D}+D\right)$	Q $\left(\sqrt{\frac{\pi}{0}+0}\right)$	$O(\sqrt{n}+D)$	O($\left(\sqrt{\frac{2}{2}}+\mathrm{D}\right)$	¢(0)
radius	(n)	-	O($\frac{n}{D}+{ }^{\text {a }}$)		-	-	Ө(0)
center	ө(n)	n($\left.\frac{n}{\bar{D}}+D\right)$	$0\left(\frac{n}{D}+D\right)$	$8\left(\sqrt{\frac{\pi}{0}+0}\right)$		-	0
p. vertices	$\theta(\mathrm{n})$	$\Omega\left(\frac{n}{D}+D\right)$	$0\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{\pi}{0}+\infty}\right)$	-	-	0
girth	${ }^{\circ}(\mathrm{n})$			$\left.\log _{9}^{p}, n\right)$)		-	

Problem	$(\mathrm{x}, 2-\mathrm{s})$	$(\mathrm{x}, 2-1 / \mathrm{g})$
girth	$\Omega\left(\frac{\sqrt{n}}{D}+\mathrm{D}\right)$	$\mathrm{O}\left(n^{2 / 3}+D \log \frac{D}{g}\right)$

Extentions

Problem	spat	(t, 1)	(x, $1+8$)	(x,3/2-8)	(x,3/2)	(x, /2/48)	(x,2)
APSP	O(n)	$\theta(\mathrm{n})$	$\theta(\mathrm{n})$	$\theta(\mathrm{n})$	-	-	-
eccentricity	-(m)	$\Omega\left(\frac{n}{D}+D\right)$	O $\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{0}}+0\right)$	-	-	O(0)
diameter	(In)	$\Omega\left(\frac{n}{D}+D\right)$	O($\left.\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{n}}+0\right)$	$O(\sqrt{n}+D)$	O($\left.\sqrt{\frac{1}{0}}+\mathrm{D}\right)$	Ө(0)
radius	O(n)		O($\frac{n}{D}+{ }^{\text {a }}$)		-	-	¢(0)
center	O(n)	$\Omega\left(\frac{n}{D}+D\right)$	$0\left(\frac{n}{D}+D\right)$	$2\left(\sqrt{\frac{\pi}{n}+\infty}\right)$		-	0
p. vertices	$\theta(\mathrm{n})$	$\Omega\left(\frac{n}{D}+D\right)$	$0\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{\pi}{0}+\infty}\right)$	-	-	0
girth	${ }^{\circ}(\mathrm{n})$			$\left.\log _{9}^{p}, n\right)$)			

Problem	$(\mathrm{x}, 2-\mathrm{s})$	$(\mathrm{x}, 2-1 / \mathrm{g})$
girth	$\Omega\left(\frac{\sqrt{n}}{D}+\mathrm{D}\right)$	$\mathrm{O}\left(n^{2 / 3}+D \log \frac{D}{g}\right)$

Extentions

Problem		Ro	bles	(x,3/2-8)	(x, $3 / 2$)	(x,3/2+8)	(x,2)
APSP	O(n)	ө(m)	ont	$\theta(\mathrm{n})$	-	-	
eccentricity	${ }^{(n)}$	$\Omega\left(\frac{n}{D}+D\right)$	O($\left.\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{1}{0}}+0\right)$			${ }^{0(0)}$
diameter	${ }^{\theta(n)}$	$\Omega\left(\frac{n}{D}+D\right)$	$0\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{2}}+0\right)$	$O(\sqrt{n}+D)$	O($\left.\sqrt{\frac{n}{0}+\mathrm{D}}\right)$	${ }^{(0)}$
radius		Social ne	works		-	-	${ }^{(0)}$
nter	o(n)	$\Omega\left(\frac{n}{D}+D\right)$	O($\left.\frac{n}{D}+D\right)$	$8\left(\sqrt{\frac{1}{0}+0}\right)$		-	
p. vericics		$\Omega\left(\frac{n}{D}+D\right)$	$\mathrm{o}\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{1}{0}}+\infty\right)$	-	-	
girth		Fightin	spam		-	-	

Problem	$(\mathrm{x}, 2-\mathrm{\varepsilon})$	$(\mathrm{x}, 2-1 / \mathrm{g})$
girth	$\Omega\left(\frac{\sqrt{n}}{D}+\mathrm{D}\right)$	$\mathrm{O}\left(n^{2 / 3}+D \log \frac{D}{g}\right)$

Extentions

Problem	$(\mathrm{x}, 2-\mathrm{s})$	$(\mathrm{x}, 2-1 / \mathrm{g})$
girth	$\Omega\left(\frac{\sqrt{n}}{D}+\mathrm{D}\right)$	$\mathrm{O}\left(n^{2 / 3}+D \log \frac{D}{g}\right)$

Also: good approximation algorithms for weighted graphs known. [Henzinger, Nanongkai et al.]

(x,1+ع)-Approximating Diameter

(x,1+ع)-Approximating Diameter

S-Shortest Path in $\mathrm{O}(|S|+D)$

(x,1+ع)-Approximating Diameter

S-Shortest Path in $\mathrm{O}(|S|+D)$

Shortest paths between S x V

($x, 1+\varepsilon$)-Approximating Diameter

S-Shortest Path in $\mathrm{O}(|S|+D)$

Shortest paths between S x V

($x, 1+\varepsilon$)-Approximating Diameter

S-Shortest Path in $\mathrm{O}(|S|+D)$

Shortest paths between S x V

ALGO:

1. Start BFS in all S-nodes
2. Messages are forwarded depending on ID and distance traveled so far

(x,1+ع)-Approximating Diameter

S-Shortest Path in $\mathrm{O}(|S|+D)$

(x,1+ع)-Approximating Diameter

S-Shortest Path in $\mathrm{O}(|S|+D)$

S:= Small $O(D / \varepsilon)$-Dominating Set

 [Kutten, Peleg 1998]
$(x, 1+\varepsilon)$-Approximating Diameter

S-Shortest Path in $\mathrm{O}(|S|+D)$

S:= Small

 $O(D / \varepsilon)$-Dominating Set [Kutten, Peleg 1998]
Runtime:
 $$
O(D+\varepsilon n / D+D)
$$

$(x, 1+\varepsilon)$-Approximating Diameter

S-Shortest Path in $\mathrm{O}(|\mathrm{S}|+\mathrm{D})$
 S:= Small $O(D / \varepsilon)$-Dominating Set
 Runtime:

 \title{ $\stackrel{\downarrow}{\downarrow} \mathrm{d}+(D+\varepsilon \cap / D+D)$

}

 \title{$\stackrel{\downarrow}{\downarrow} \mathrm{d}+(D+\varepsilon \cap / D+D)$
}}

$(x, 1+\varepsilon)$-Approximating Diameter

S-Shortest Path in $\mathrm{O}(|\mathrm{S}|+\mathrm{D})$
 S:= Small $O(D / \varepsilon)$-Dominating Set
 Runtime:

 \title{

}

 \title{
}}

$(x, 1+\varepsilon)$-Approximating Diameter

S-Shortest Path in $\mathrm{O}(|S|+D)$

S:= Small $O(D / \varepsilon)$-Dominating Set

 [Kutten, Peleg 1998]
Runtime:

$$
O(n / D+D)
$$

$(x, 1+\varepsilon)$-Approximating Diameter

S -Shortest Path in $\mathrm{O}(|\mathrm{S}|+\mathrm{D})$

S:= Small
 $O(D / \varepsilon)$-Dominating Set

[Kutten, Peleg 1998]

Runtime: $O(n / D+D)$ Maximal error: D/ع

$(x, 1+\varepsilon)$-Approximating Diameter

S -Shortest Path in $\mathrm{O}(|\mathrm{S}|+\mathrm{D})$

S:= Small
 $O(D / \varepsilon)$-Dominating Set

[Kutten, Peleg 1998]

Runtime: $O(n / D+D)$ Maximal error: D/\& vs. D

3/2-approximating the Diameter in $O(\sqrt{n \log n}+D)$

3/2-approximating the Diameter in $O(\sqrt{n \log n}+D)$

Sample \sqrt{n}

3/2-approximating the Diameter in $O(\sqrt{n \log n}+D)$

Sample \sqrt{n}
 of largest distance to $\{\bigcirc \bigcirc \bigcirc\}$

3/2-approximating the Diameter in $O(\sqrt{n \log n}+D)$

Sample \sqrt{n}

of largest distance to $\{\bigcirc \bigcirc \bigcirc\}$ \sqrt{n} closest \bigcirc to

$3 / 2$-approximating the Diameter in $O(\sqrt{n \log n}+D)$

Sample $\sqrt{n} \bigcirc \bigcirc$
 of largest distance to $\{\bigcirc \bigcirc \bigcirc\}$

 \sqrt{n} closest \bigcirc to
$3 / 2$-approximating the Diameter in
 $O(\sqrt{n \log n}+D)$

Sample $\sqrt{n} \bigcirc \bigcirc$
 - of largest distance to $\{\bigcirc \bigcirc \bigcirc\}$
 Compute BFS from each

 \sqrt{n} closest \bigcirc to-

$\bullet \bullet-$

Distributed verification can be hard

(Minimum) Spanning Trees

Spanning tree:

Subgraph of a graph that includes all nodes and is a tree

Spanning tree of minimal total edge weight

Distributed verification can be hard

DistributedVerification and Hardness of Distributed Approximation

Sequential world:
CONGEST world:

NP-complete problem SAT
Solving: seems hard
Verifying assignment: easy
Sequential: Verification
Verify: H spanning tree of G ? $\Omega\left(n^{1 / 2}\right)$
Distributed: Verification can be harder than computing

Time of Distributed MST-Algorithms

Problems	Upper bound	Lower bound
MST	$\mathrm{O}\left(\mathrm{D}+\mathrm{n}^{1 / 2}\right)$	$\Omega\left(\mathrm{D}+\mathrm{n}^{1 / 2}\right)$
	[Garay, Kutten, Peleg FOCS'93] $]$	[Peleg, Rubinovich FOCS'99]

Time of Distributed MST-Algorithms

Problems	Upper bound	Lower bound
MST	$\mathrm{O}\left(\mathrm{D}+\mathrm{n}^{1 / 2}\right)$	$\Omega\left(\mathrm{D}+\mathrm{n}^{1 / 2}\right)$
$\boldsymbol{\alpha}$-approx. MST	OPEN	
[Gaten, Kuten, Peleg FOCS'93]		

a-approximation:

Let T be a MST of G and $\omega(T)$ its weight.

A spanning tree $\mathrm{T}^{`}$ is an α-approximate MST if

$$
\omega\left(\mathrm{T}^{`}\right) \leq \alpha \omega(\mathrm{T})
$$

Time of Distributed MST-Algorithms

Problems	Upper bound	Lower bound
MST	$O\left(D+n^{1 / 2}\right)$ [Garay, Kutten, Peleg FOCS'93]	$\Omega\left(D+n^{1 / 2}\right)$ [Peleg, Rubinovich FOCS' 99]
α-approx. MST	OPEN	$\Omega\left(D+(n / \alpha)^{1 / 2}\right)$ [Elkin STOC'04]

α-approximation:

Let T be a MST of G and $\omega(T)$ its weight.

A spanning tree $\mathrm{T}^{`}$ is an α-approximate MST if

$$
\omega\left(\mathrm{T}^{`}\right) \leq \alpha \omega(\mathrm{T})
$$

Time of Distributed MST-Algorithms

Problems	Upper bound	Lower bound
MST	$\mathrm{O}\left(\mathrm{D}+\mathrm{n}^{1 / 2}\right)$	$\Omega\left(\mathrm{D}+\mathrm{n}^{1 / 2}\right)$
$\boldsymbol{\alpha}$-approx. MST	OPEN	$\Omega\left(\mathrm{D}+(\mathrm{n} / \alpha)^{1 / 2}\right)$ [Elkin STOC'04] $]$
ST Verification		

Time of Distributed MST-Algorithms

Problems	Upper bound	Lower bound
MST	$O\left(D+n^{1 / 2}\right)$	$\Omega\left(D+n^{1 / 2}\right)$
$\boldsymbol{\alpha}$-approx. MST	OPEN	[Garay, Kutten, Peleg FOCS'93]
[Peleg, Rubinovich FOCS'99]		
ST Verification	$O\left(D+(n / \alpha)^{1 / 2}\right)$	

Time of Distributed MST-Algorithms

Problems	Upper bound	Lower bound
MST	$O\left(D+n^{1 / 2}\right)$ [Garay, Kutten, Peleg FOCS'93]	$\Omega\left(D+n^{1 / 2}\right)$
α-approx. MST	OPEN	$\Omega\left(D+(n / \alpha)^{1 / 2}\right)$ [Elkin STOC'04]
ST Verification	$O\left(D+n^{1 / 2}\right)$	$\Omega\left(D+n^{1 / 2}\right)$

Time of Distributed MST-Algorithms

Problems	Upper bound	Lower bound
MST	$O\left(D+n^{1 / 2}\right)$ [Garay, Kutten, Peleg FOCS'93]	$\Omega\left(D+n^{1 / 2}\right)$
α-approx. MST	HOPELESS	$\Omega\left(D+(n / \alpha)^{1 / 2}\right)$ [Elkin STOC'04]
ST Verification	$O\left(D+n^{1 / 2}\right)$	$\Omega\left(D+n^{1 / 2}\right)$

Time of Distributed MST-Algorithms

Problems	Upper bound	Lower bound
MST	$O\left(D+n^{1 / 2}\right)$ [Garay, Kutten, Peleg FOCS'93]	$\Omega\left(D+n^{1 / 2}\right)$
α-approx. MST	HOPELESS : $:$	$\Omega\left(D+(\mathrm{n} / \alpha)^{1 / 2}\right)$ [Elkin STOC'04]
ST Verification	$O\left(D+n^{1 / 2}\right)$	$\Omega\left(D+n^{1 / 2}\right)$
		King, Kutten, Thorup PODC'15: Message Complexity o(m)

Distributed algorithms for the above problems require

time

Three steps of reduction

Distributed Algorithms

Direct equality verification lower bound $\Omega(\mathrm{n})$

Well-known result in communication complexity
simulation theorem

Distributed equality verification lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$

Similar to lower bounds of graph streaming algorithms

Similar to hardness of TSP

Approx MST lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$

Communication complexity of EQUALITY

$x=y ?$

\qquad

$$
x \in\{0,1\}^{k} \quad \text { Deterministic: } \Omega(\mathbf{k}) \quad y \in\{0,1\}^{k}
$$

Distributed time complexity of EQUALITY

Alice and Bob are connected by many paths of

 length $\mathrm{n}^{1 / 2}$

Alice and Bob are connected by many paths of length $\mathrm{n}^{1 / 2}$

$n^{1 / 2}$ green nodes

Alice and Bob are connected by many paths of length $\mathrm{n}^{1 / 2}$

$n^{1 / 2}$ green nodes

Alice and Bob are connected by many paths of

 length $\mathrm{n}^{1 / 2}$$n^{1 / 2}$ green nodes

Alice and Bob are connected by many paths of

 length $\mathrm{n}^{1 / 2}$$n^{1 / 2}$ green nodes

Alice and Bob are connected by many paths of

 length $\mathrm{n}^{1 / 2}$$n^{1 / 2}$ green nodes

Alice and Bob are connected by many paths of

 length $\mathrm{n}^{1 / 2}$

Alice and Bob are connected by many paths of

 length $\mathrm{n}^{1 / 2}$

Alice and Bob are connected by many paths of

 length $\mathrm{n}^{1 / 2}$

Alice and Bob are connected by many paths of

 length $\mathrm{n}^{1 / 2}$

Alice and Bob are connected by many paths of

 length $\mathrm{n}^{1 / 2}$

Alice and Bob are connected by many paths of

 length $\mathrm{n}^{1 / 2}$

Make the diameter smaller

Now the diameter is $\mathrm{n}^{1 / 2} / 5$ How many steps do we need?

$\mathrm{n}^{1 / 2}$ green nodes

Now the diameter is $\mathrm{n}^{1 / 2} / 5$ How many steps do we need?

$\mathrm{n}^{1 / 2}$ green nodes

Now the diameter is $\mathrm{n}^{1 / 2} / 5$ How many steps do we need?

$\mathrm{n}^{1 / 2}$ green nodes

Now the diameter is $\mathrm{n}^{1 / 2} / 5$ How many steps do we need?

$\mathrm{n}^{1 / 2}$ green nodes

Now the diameter is $\mathrm{n}^{1 / 2} / 5$ How many steps do we need?

$\mathrm{n}^{1 / 2}$ green nodes

Now the diameter is $\mathrm{n}^{1 / 2} / 5$ How many steps do we need?

$\mathrm{n}^{1 / 2}$ green nodes

Now the diameter is $\mathrm{n}^{1 / 2} / 5$ How many steps do we need?

$\mathrm{n}^{1 / 2}$ green nodes

Now the diameter is $\mathrm{n}^{1 / 2} / 5$ How many steps do we need?

$\mathrm{n}^{1 / 2}$ green nodes

No high speedup

Reduce diameter ...

Diameter $=\log n$

$\mathrm{n}^{1 / 2}$ green nodes

Three steps of reduction

Distributed Algorithms

Direct equality verification lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$

Well-known result in communication complexity
simulation theorem

Distributed equality verificatior
lower bound $\Omega\left(\mathrm{n}^{1 / 2)}\right.$

Similar to lower bounds of graph streaming algorithms

Similar to hardness of TSP

Approx MST lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$

Example:

$x=01 \ldots 1 \quad y=01 \ldots 1$

Example:

$x=01 \ldots 1 \quad y=01 \ldots 1$

Example:

$x=01 \ldots 1 \quad y=01 \ldots 1$

Example:

Valid spanning tree

Another Example:
 $x=01 \ldots 0$
 $y=01 . . .1$

Disconnected subgraph

Another Example:
 $x=01 \ldots 1 \quad y=01 \ldots 0$

Subgraph with cycle

Three steps of reduction

Distributed Algorithms

Direct equality verification lower bound $\Omega\left(n^{1 / 2}\right)$

Well-known result in communication complexity
simulation theorem

Distributed equality verificatior
lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$

Similar to lower bounds of graph stre, ing algorithms

ST verification lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$

Similar to hardness of TSP

Approx MST lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$

From ST-Verification to MST-Approximation

Given: G and subgraph H

Use α-approximation for MST to decide if H is ST

From ST-Verification to MST-Approximation

Given: G and subgraph H

Use α-approximation for MST to decide if H is ST

From ST-Verification to MST-Approximation

Given: G and subgraph H

Use α-approximation
for MST to decide if H is ST

Observe: iff H is ST , H is MST of weight $\mathrm{n}-1$

Observe: iff H is ST , no α-MST besides H

Thus: α-approximating
a MST takes $\Omega\left(\mathrm{n}^{1 / 2}\right)$

Three steps of reduction

Distributed Algorithms

Direct equality verification lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$

Well-known result in communication complexity
simulation theorem

Deterministic lower bound.

Randomized: use DISJOINTNESS and Different intermediate steps.

Distributed equality verificatior
lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$

Similar to lower bounds of graph streaming algorithms

Approx MST lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$

Comparison of the Techniques

General:
Approximation LB:
Best LB possible:
Diameter of graph:
yes
yes
$\Omega(\mathrm{n})$
3
yes
yes
$\Omega\left(\mathrm{n}^{1 / 2}\right)$
O($\log n$)

Comparison of the Techniques

General:
Approximation LB:
Best LB possible:
Diameter of graph:
Problems applied to: >15
yes
yes
$\Omega\left(\mathrm{n}^{1 / 2}\right)$
O($\log n$)
>22

Summary

Diameter $\Omega(\mathrm{n})$

正

Diameter O(n)

22 Lower bounds Simulation Theorem

Thanks!

