This file accompanies a presentation given at the 3rd workshop on Advanced Distributed Graph Algorithms in Paris on 09/26/2016. The material is not complete and deviates from the content of the original papers for sake of simpler presentation of key ideas and concepts to this particular audience.

Theory of Distributed Systems Group S

Stephan Holzer

Recent Algorithms and Lower Bounds for Global Distributed Graph Problems

Stephan Holzer

Thanks to collaborators:

Atish Das Sarma, Benjamin Dissler, Silvio Frischknecht, Liah Kor

Amos Korman, Danupon Nanongkai, Gopal Pandurangan

David Peleg, Nathan Pinsker, Liam Roditty, Roger Wattenhofer [STOC'11,SODA'12,PODC'12,SICOMP'12,DISC'14,OPODIS'15,Arxiv'16]

Theory of Distributed Systems Group Stephan Holzer www.stephanholzer.com

Massachusetts Institute of Technology

Recent Algorithms and Lower Bounds for Global Distributed Graph Problems

Stephan Holzer

Thanks to collaborators:

Atish Das Sarma, Benjamin Dissler, Silvio Frischknecht, Liah Kor

Amos Korman, Danupon Nanongkai, Gopal Pandurangan

David Peleg, Nathan Pinsker, Liam Roditty, Roger Wattenhofer [STOC'11,SODA'12,PODC'12,SICOMP'12,DISC'14,OPODIS'15,Arxiv'16]

Theory of Distributed Systems Group Stephan Holzer www.stephanholzer.com

Massachusetts Institute of Technology

Theory of Distributed Systems Group

Stephan Holzer

DISTRIBUTED COMPUTING

A Locality-Sensitive Approach

Theory of Distributed Systems Group

Stephan Holzer

1. Formal definition? A Locality-Sensitive Approach Throughout, we denote $\Lambda = \lceil \log Diam(G) \rceil$. In a weighted graph G, let $Diam^{un}(G)$ denote the unweighted diameter of G, i.e., the maximum unweighted distance between any two vertices of G. Definition 2.1.2 [Radius and center]: For a vertex $v \in V$, let Rad(v,G) denote the distance from v to the vertex farthest away from it in the graph G: $Rad(v, G) = \max_{w \in V} \{dist_G(v, w)\}.$ Let Rad(G) denote the radius of the network, i.e., $Rad(G) = \min_{v \in V} \{Rad(v, G)\}$ A center of G is any vertex v realizing the radius of G (i.e., such that Rad(v, G) = Rad(G)). In order to simplify some of the following definitions, we avoid problems arising from 0diameter or 0-radius graphs, by defining Rad(G) = Diam(G) = 1 for the single-vertex $b C = (I_{ij}) (0)$ Complexity of computing D? $\Theta(n)$ Even if D = 3of First part of talk: **O(n)** [PODC 2012] [SODA 2012]

DISTRIBUTED COMPUTING

2.1. The model

measuring the distance between u and w looking at G as an unweighted graph, i.e., it is the minimum number of hops necessary to get from u to w.

17

Theory of Distributed Systems Group

Stephan Holzer

Diameter of a network

- Distance between two nodes = Number of hops of shortest path
- **Diameter** of network = Maximum distance, between any two nodes

Theory of Distributed Systems Group Stephan Holzer www.stephanholzer.com

Theory of Distributed Systems Group

Stephan Holzer

Theory of Distributed Systems Group

Stephan Holzer

Networks cannot compute their diameter in sublinear time! D = 2 or 3?

Upper and lower row not connected on any side?

Theory of Distributed Systems Group

Stephan Holzer w

Upper and lower row not connected on any side?

Now: slightly more details

Theory of Distributed Systems Group

Stephan Holzer

Upper and lower row not connected on any side?

Theory of Distributed Systems Group

Stephan Holzer

Upper and lower row not connected on any side?

Theory of Distributed Systems Group

Stephan Holzer

Upper and lower row not connected on any side?

Theory of Distributed Systems Group

Stephan Holzer

Upper and lower row not connected on any side?

Theory of Distributed Systems Group

Stephan Holzer

Upper and lower row not connected on any side?

Theory of Distributed Systems Group

Stephan Holzer

Upper and lower row not connected on any side?

Theory of Distributed Systems Group

Stephan Holzer

Upper and lower row not connected on any side?

Theory of Distributed Systems Group

Stephan Holzer

Upper and lower row not connected on any side?

Massachusetts Institute of Technology

Abboud, Censor-Hillel, Khoury - DISC 2016: Even in sparse / constant degree graphs!

Theory of Distributed Systems Group

Stephan Holzer

Networks cannot compute their diameter in sublinear time!

Theory of Distributed Systems Group

Stephan Holzer

Networks cannot compute their diameter in sublinear time!

Theory of Distributed Systems Group

Stephan Holzer

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths

Knows its distance to all other nodes

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths For each node { compute distances to all other nodes; }

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths For each node { compute distances to all other nodes; }

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths For each node { compute distances to all other nodes; }

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths For each node { compute distances to all other nodes; }

Stephan Holzer

}

Compute All Pairs Shortest Paths For each node { compute distances to all other nodes;

O(D)

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths For each node { compute distances to all other nodes; O(D)}

Stephan Holzer

}

Compute All Pairs Shortest Paths For each node { compute distances to all other nodes;

Theory of Distributed Systems Group

Stephan Holzer

www.stephanholzer.com

O(D)

}

Compute All Pairs Shortest Paths For each node { compute distances to all other nodes;

O(D)

Theory of Distributed Systems Group

Stephan Holzer

}

- Compute All Pairs Shortest Paths For each node { compute distances to all other nodes;

Stephan Holzer

www.stephanholzer.com

O(D)

Compute All Pairs Shortest Paths O(n)For each node { O(D)compute distances to all other nodes; }

Theory of Distributed Systems Group

Stephan Holzer

Theory of Distributed Systems Group

Stephan Holzer

Theory of Distributed Systems Group

Stephan Holzer

Theory of Distributed Systems Group Stephan Holzer

Compute All Pairs Shortest Paths

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths

1. Pick a root-node r;

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- Pebble P traverses T in preorder;

Theory of Distributed Systems Group

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- Pebble P traverses T 3. in preorder;
- 4. If P visits node v first time{ wait 1 timeslot; start shortest paths(v);

Theory of Distributed Systems Group

Stephan Holzer

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- 3. Pebble P traverses T in preorder;
- If P visits node v first time{
 wait 1 timeslot;
 start shortest paths(v);

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- Pebble P traverses T in preorder;
- 4. If P visits node v first time{ wait 1 timeslot; start shortest paths(v);

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- 3. Pebble P traverses T in preorder;
- If P visits node v first time{
 wait 1 timeslot;
 start shortest paths(v);

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- 3. Pebble P traverses T in preorder;
- 4. If P visits node v first time{
 wait 1 timeslot;
 start shortest paths(v);
 }

Arrives at t + d(u, v)

Theory of Distributed Systems Group

Starts at t

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- 3. Pebble P traverses T in preorder;
- 4. If P visits node v first time{
 wait 1 timeslot;
 start shortest paths(v);

Arrives at t + d(u, v)

Theory of Distributed Systems Group

Starts at t

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- 3. Pebble P traverses T in preorder;
- 4. If P visits node v first time{
 wait 1 timeslot;
 start shortest paths(v);

Arrives at t + d(u, v)

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- 3. Pebble P traverses T in preorder;
- 4. If P visits node v first time{
 wait 1 timeslot;
 start shortest paths(v);

Arrives att + d(u, v)Arrives at $\geq t + d(u, v)$

Theory of Distributed Systems Group St

Stephan Holzer

www.stephanholzer.com

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- 3. Pebble P traverses T in preorder;
- 4. If P visits node v first time{
 wait 1 timeslot;
 start shortest paths(v);
 }

Arrives att + d(u, v)Arrives at $\geq t + d(u, v)$

Theory of Distributed Systems Group Ste

Stephan Holzer

www.stephanholzer.com

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- 3. Pebble P traverses T in preorder;
- 4. If P visits node v first time{ wait 1 timeslot; start shortest paths(v);

Arrives at t + d(u, v)Arrives at $\geq t + d(u, v) + 1$

Theory of Distributed Systems Group

Stephan Holzer

www.stephanholzer.com

Compute All Pairs Shortest Paths

- 1. Pick a root-node r;
- 2. **T** := BFS-Tree(r);
- Pebble P traverses T in preorder;

4. If P visits node v first time{ wait 1 timeslot;

start shortest paths(v);

v never active for u and w

Artitles same tim e!(u, v)

Arrives at $\geq t + d rantime 10(n + D) = O(n)$

Theory of Distributed Systems Group

Stephan Holzer

www.stephanholzer.com

U. Starts at t

No congestion!

True for any trippel.

Theory of Distributed Systems Group Stephan Holzer www.stephanholzer.com

Plii

Theory of Distributed Systems Group

Stephan Holzer

Problem	Exact	(+, 1)	(x, 1 + ε)	(x, 3/2 - ε)	(x, 3/2)	(x, 3/2+ε)	(x, 2)
APSP	Θ(n)	Θ(n)	Θ(n)	Θ(n)			
eccentricity	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$			Θ(D)
diameter	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$	$O(\sqrt{n} + D)$	$O\left(\sqrt{\frac{n}{D}} + D\right)$	Θ(D)
radius	O(n)		$0\left(\frac{n}{D}+D\right)$				Θ(D)
center	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$			0
p. vertices	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$			0
girth	O(n)		$0\left(\min\left(\frac{n}{g}+D\right)\log\left(\frac{n}{g}+D\right)\right)$	$\left(\operatorname{bg} \frac{D}{g}, n \right) $			

Problem	(x, 2-ε)	(x, 2-1/g)
girth	$\Omega\left(\frac{\sqrt{n}}{D} + D\right)$	$O\left(n^{2/_3} + D\log\frac{D}{g}\right)$

Theory of Distributed Systems Group Ste

Problem	Exact	(+, 1)	(x, 1 + ε)	(x, 3/2 - ε)	(x, 3/2)	(x, 3/2+ε)	(x, 2)
APSP	Θ(n)	Θ(n)	Θ(n)	Θ(n)			
eccentricity	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$			Θ(D)
diameter	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$	$O(\sqrt{n} + D)$	$O\left(\sqrt{\frac{n}{D}} + D\right)$	Θ(D)
radius	O(n)		$0\left(\frac{n}{D}+D\right)$				Θ(D)
center	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$			0
p. vertices	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$			0
girth	O(n)		$0\left(\min\left(\frac{n}{g}+D\right)\log\left(\frac{n}{g}+D\right)\right)$	$\left(\operatorname{pg} \frac{D}{g}, n \right) $			

Problem	(x, 2-ε)	(x, 2-1/g)
girth	$\Omega\left(\frac{\sqrt{n}}{D} + D\right)$	$O\left(n^{2/_3} + D\log\frac{D}{g}\right)$

Theory of Distributed Systems Group Ste

Problem	Exact	(+, 1)	(x, 1 + ε)	(x, 3/2 - ε)	(x, 3/2)	(x, 3/2+ε)	(x, 2)
APSP	Θ(n)	Θ(n)	Θ(n)	Θ(n)			
eccentricity	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$			Θ(D)
diameter	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$	$O(\sqrt{n} + D)$	$O\left(\sqrt{\frac{n}{D}} + D\right)$	Θ(D)
radius	O(n)		$0\left(\frac{n}{D}+D\right)$				Θ(D)
center	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$			0
p. vertices	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\Omega\left(\sqrt{\frac{n}{D}} + D\right)$			0
girth	O(n)		$0\left(\min\left(\frac{n}{g}+D\log\right)\right)$	$\left(\log \frac{D}{g}, n \right) $			

Problem	(x, 2-ε)	(x, 2-1/g)
girth	$\Omega\left(\frac{\sqrt{n}}{D} + D\right)$	$O\left(n^{2/_3} + D\log\frac{D}{g}\right)$

Theory of Distributed Systems Group Ste

Problem	Exac	Routing ta	ables 🛛	(x, 3/2 - ε)	(x, 3/2)	(x, 3/2+ε)	(x, 2)
APSP	Θ(n)	Θ(n)	Θ(n)	Θ(n)			
eccentricity	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\int \Omega\left(\sqrt{\frac{n}{D}} + D\right)$			Θ(D)
diameter	Θ(n)			$\int \Omega\left(\sqrt{\frac{n}{D}} + D\right)$	$O(\sqrt{n} + D)$	$O\left(\sqrt{\frac{n}{D}} + D\right)$	Θ(D)
radius	0	Social net	vorks)			Θ(D)
center 🕨	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\int \Omega\left(\sqrt{\frac{n}{D}} + D\right)$			0
p. vertices	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D}+D\right)$	$\int \Omega\left(\sqrt{\frac{n}{D}} + D\right)$			0
girth	O(n)	Fighting	spam	$\log \frac{D}{g}$, $n ight)$			

Problem	(x, 2-ε)	(x, 2-1/g)
girth	$\Omega\left(\frac{\sqrt{n}}{D}+D\right)$	$O\left(n^{2/_3} + D\log\frac{D}{g}\right)$

Theory of Distributed Systems Group Step

Problem	Exac	Routing ta	ables 🛛	(x, 3/2 - ε)	(x, 3/2)	(x, 3/2+ε)	(x, 2)
APSP	Θ(n)	Θ(n)	Θ(n)	Θ(n)			
eccentricity	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$0\left(\frac{n}{D}+D\right)$	$\int \Omega\left(\sqrt{\frac{n}{D}} + D\right)$			Θ(D)
diameter	Θ(n)			$\int \Omega\left(\sqrt{\frac{n}{D}} + D\right)$	$O(\sqrt{n} + D)$	$O\left(\sqrt{\frac{n}{D}} + D\right)$	Θ(D)
radius	0	Social netv	vorks)			Θ(D)
center 🕨	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$0\left(\frac{n}{D}+D\right)$	$\int \Omega\left(\sqrt{\frac{n}{D}} + D\right)$			0
p. vertices	Θ(n)	$\Omega\left(\frac{n}{D}+D\right)$	$O\left(\frac{n}{D} + D\right)$	$\int \Omega\left(\sqrt{\frac{n}{D}} + D\right)$			0
girth	O(n)	Fighting	spam	$\log \frac{D}{g}$, $n \bigg) \bigg)$			

Problem	(x, 2-ε)	(x, 2-1/g)
girth	$\Omega\left(\frac{\sqrt{n}}{D} + D\right)$	$O\left(n^{2/3} + D\log\frac{D}{g}\right)$

Also: good approximation algorithms for weighted graphs known. [Henzinger, Nanongkai et al.]

Theory of Distributed Systems Group Stephan Holzer

Theory of Distributed Systems Group

$(x, 1+\varepsilon)$ -Approximating Diameter

S-Shortest Path in O(|S| + D)

Theory of Distributed Systems Group

S-Shortest Path in O(|S| + D)

Shortest paths between S x V

S-Shortest Path in O(|S| + D)

Shortest paths between S x V

$(x, 1+\varepsilon)$ -Approximating Diameter

S-Shortest Path in O(|S| + D)

Shortest paths between S x V

ALGO:

- 1. Start BFS in all S-nodes
- 2. Messages are forwarded depending on ID and distance traveled so far

$(x, 1+\varepsilon)$ -Approximating Diameter

S-Shortest Path in O(|S| + D)

Theory of Distributed Systems Group

S-Shortest Path in O(|S| + D)

S:= Small $O(D/\epsilon)$ -Dominating Set

[Kutten, Peleg 1998]

Theory of Distributed Systems Group

Stephan Holzer

S-Shortest Path in O(|S| + D)

S:= Small $O(D/\epsilon)$ -Dominating Set

[Kutten, Peleg 1998]

Runtime:

$O(D + \epsilon n/D + D)$

Theory of Distributed Systems Group

Stephan Holzer

S-Shortest Path in O(|S| + D) S:= Small $O(D/\epsilon)$ -Dominating Set Kutten, Peleg 1998] $O(D + \epsilon n/D + D)$ **Runtime**:

Theory of Distributed Systems Group

Stephan Holzer

S-Shortest Path in O(|S| + D) S:= Small $O(D/\epsilon)$ -Dominating Set Kutten, Peleg 1998] $O(D + \epsilon n/D + D)$ **Runtime**:

Theory of Distributed Systems Group

Stephan Holzer

S-Shortest Path in O(|S| + D)

S:= Small $O(D/\epsilon)$ -Dominating Set

[Kutten, Peleg 1998]

Runtime:

O(n/D + D)

Theory of Distributed Systems Group

Stephan Holzer

S-Shortest Path in O(|S| + D)

S:= Small $O(D/\epsilon)$ -Dominating Set

[Kutten, Peleg 1998]

Runtime: O(n/D + D)Maximal error: D/ϵ

Theory of Distributed Systems Group

Stephan Holzer

S-Shortest Path in O(|S| + D)

S:= Small $O(D/\epsilon)$ -Dominating Set

[Kutten, Peleg 1998]

Runtime: O(n/D + D)Maximal error: $D/\epsilon vs. D$

Theory of Distributed Systems Group

Stephan Holzer

Sample \sqrt{n} \bullet \bullet \bullet of largest distance to { \bullet \bullet } \sqrt{n} closest \bullet \bullet to \bullet

Sample \sqrt{n} **Compute BFS** of largest distance to { from each \sqrt{n} closest \bullet \bullet to \bullet Theory of Distributed Systems Group Stephan Holzer www.stephanholzer.com

Massachusetts Institute of Technology

Distributed verification can be hard

Theory of Distributed Systems Group

Stephan Holzer

(Minimum) Spanning Trees

Spanning tree:

Subgraph of a graph that includes all nodes and is a tree

Theory of Distributed Systems Group

Stephan Holzer

Minimum spanning tree:

Spanning tree of minimal total edge weight

Distributed verification can be hard

Theory of Distributed Systems Group

Stephan Holzer

Distributed Verification and Hardness of Distributed Approximation

Sequential world:

CONGEST world:

NP-complete problem SAT

- Solving: seems hard
- Verifying assignment: easy

Sequential: Verification Generation Verify: H spanning tree of G? O(n^{1/2}) Generation can be harder than computing

Problems	Upper bound	Lower bound
MST	O(D + n ^{1/2})	$\Omega(D + n^{1/2})$
	[Garay, Kutten, Peleg FOCS'93]	[Peleg, Rubinovich FOCS'99]

Theory of Distributed Systems Group

Stephan Holzer

Problems	Upper bound	Lower bound
MST	O(D + n ^{1/2}) [Garay, Kutten, Peleg FOCS'93] [Ω(D + n ^{1/2}) Peleg, Rubinovich FOCS'99]
α -approx. MST	OPEN	

 α -approximation:

Let T be a MST of G and $\omega(T)$ its weight.

A spanning tree T is an α -approximate MST if $\omega(T) \leq \alpha \omega(T)$

Theory of Distributed Systems Group Stephan Holzer www.stephanholzer.com

Problems	Upper bound	Lower bound
MST	O(D + n ^{1/2})	$\Omega(D + n^{1/2})$
	[Garay, Kutten, Peleg FOCS'93]	[Peleg, Rubinovich FOCS'99]
α -approx. MST	OPEN	$\Omega(D + (n / \alpha)^{1/2})$
		[Elkin STOC'04]

 α -approximation:

Let T be a MST of G and $\omega(T)$ its weight.

A spanning tree T is an α -approximate MST if $\omega(T) \leq \alpha \omega(T)$

Theory of Distributed Systems Group Stephan Holzer www.stephanholzer.com

Problems	Upper bound	Lower bound
MST	O(D + n ^{1/2}) [Garay, Kutten, Peleg FOCS'93] [P	Ω(D + n ^{1/2}) Peleg, Rubinovich FOCS'99]
α -approx. MST	OPEN	$\Omega(D + (n / \alpha)^{1/2})$ [Elkin STOC'04]
ST Verification		

Theory of Distributed Systems Group

Stephan Holzer

Problems	Upper bound	Lower bound
MST	O(D + n ^{1/2}) [Garay, Kutten, Peleg FOCS'93] [F	Ω(D + n ^{1/2}) Peleg, Rubinovich FOCS'99]
α -approx. MST	OPEN	$\Omega(D + (n / \alpha)^{1/2})$ [Elkin STOC'04]
ST Verification	O(D + n ^{1/2})	

Theory of Distributed Systems Group

Stephan Holzer

Problems	Upper bound	Lower bound
MST	O(D + n ^{1/2}) [Garay, Kutten, Peleg FOCS'93] [Pe	$\Omega(D + n^{1/2})$ eleg, Rubinovich FOCS'99]
α -approx. MST	OPEN	$\Omega(D + (n / \alpha)^{1/2})$ [Elkin STOC'04]
ST Verification	O(D + n ^{1/2})	Ω (D + n ^{1/2})

Theory of Distributed Systems Group

Time of Distributed MST-Algorithms

Problems	Upper bound	Lower bound
MST	O(D + n ^{1/2}) [Garay, Kutten, Peleg FOCS'93] [Pe	$\Omega(D + n^{1/2})$ eleg, Rubinovich FOCS'99]
α -approx. MST	HOPELESS 😕	$\Omega(D + (n / \alpha)^{1/2})$ [Elkin STOC'04]
ST Verification	O(D + n ^{1/2})	Ω (D + n ^{1/2})

Theory of Distributed Systems Group

Stephan Holzer www.stephanholzer.com

Time of Distributed MST-Algorithms

Problems	Upper bound	Lower bound
MST	O(D + n ^{1/2})	Ω (D + n ^{1/2})
	[Garay, Kutten, Peleg FOCS'93] [P	eleg, Rubinovich FOCS'99]
α -approx. MST	HOPELESS 😂	$\Omega(D + (n / \alpha)^{1/2})$
		[Elkin STOC'04]
ST Verification	O(D + n ^{1/2})	Ω (D + n ^{1/2})
		King, Kutten, Thorup
		PODC'15:
		Message Complexity
	2	o(m)
of Distributed Systems Group	Stephan Holzer www.stephanholzer.com	Massachusetts Institute of Technology

General technique for lower bounds

Connects communication complexity to distributed comp.

Connects verification to approximation

Many bounds tight

Systematic study of distributed verification

Distributed algorithms for the above problems require $\Omega(n^{1/2}+D)$ time

Three steps of reduction

Theory of Distributed Systems Group

Stephan Holzer

www.stephanholzer.com

Slide by Danupon

Communication complexity of EQUALITY

$x \in \{0, 1\}^k \qquad \text{Deterministic: } \Omega(k) \qquad y \in \{0, 1\}^k$

Theory of Distributed Systems Group

Stephan Holzer

Distributed time complexity of EQUALITY

Theory of Distributed Systems Group

Stephan Holzer

n^{1/2} green nodes

Theory of Distributed Systems Group

Stephan Holzer

n^{1/2} green nodes

Theory of Distributed Systems Group

Stephan Holzer

n^{1/2} green nodes

Theory of Distributed Systems Group

Stephan Holzer

n^{1/2} green nodes

Theory of Distributed Systems Group

Stephan Holzer

Theory of Distributed Systems Group

Stephan Holzer

n^{1/2} green nodes

Theory of Distributed Systems Group

Stephan Holzer

Theory of Distributed Systems Group

Stephan Holzer

n^{1/2} green nodes

Theory of Distributed Systems Group

Stephan Holzer

n^{1/2} green nodes

Theory of Distributed Systems Group

Stephan Holzer

n^{1/2} green nodes

Theory of Distributed Systems Group

Stephan Holzer

n^{1/2} green nodes

Theory of Distributed Systems Group

Stephan Holzer

Theory of Distributed Systems Group

Stephan Holzer

Make the diameter smaller

Theory of Distributed Systems Group

Stephan Holzer

n^{1/2} green nodes

Theory of Distributed Systems Group S

Stephan Holzer

www.stephanholzer.com

Slide by Danupon

n^{1/2} green nodes

Theory of Distributed Systems Group S

Stephan Holzer

www.stephanholzer.com

Slide by Danupon

n^{1/2} green nodes

Theory of Distributed Systems Group

Stephan Holzer

www.stephanholzer.com

Slide by Danupon

n^{1/2} green nodes

Theory of Distributed Systems Group S

Stephan Holzer

www.stephanholzer.com

Slide by Danupon

n^{1/2} green nodes

Theory of Distributed Systems Group S

Stephan Holzer www.stepha

www.stephanholzer.com

Slide by Danupon

n^{1/2} green nodes

Theory of Distributed Systems Group S

Stephan Holzer ww

www.stephanholzer.com

Slide by Danupon

n^{1/2} green nodes

Theory of Distributed Systems Group S

Stephan Holzer w

www.stephanholzer.com

Slide by Danupon

n^{1/2} green nodes

Theory of Distributed Systems Group

Stephan Holzer

www.stephanholzer.com

Reduce diameter ...

Theory of Distributed Systems Group

Stephan Holzer

Three steps of reduction

Communication Complexity Distributed Algorithms Distributed equality verification **Direct** equality verification lower bound $\Omega(n^{1/2})$ lower bound $\Omega(n^{1/2})$ Well-known result in Similar to lower bounds of simulation communication complexity graph streaming algorithms theorem ST verification lower bound $\Omega(n^{1/2})$ Similar to hardness of TSP **Approx MST lower** bound $\Omega(n^{1/2})$

Theory of Distributed Systems Group

Stephan Holzer

www.stephanholzer.com

Slide by Danupon

Another Example: x=01...0 y=01...1

Disconnected subgraph

Another Example: x=01...1 y=01...0

Subgraph with cycle

Three steps of reduction

Theory of Distributed Systems Group

Stephan Holzer

www.stephanholzer.com

Slide by Danupon

Massachusetts Institute of Technology

From ST-Verification to MST-Approximation

Given: G and subgraph H

Use α-approximation for MST to decide if **H** is ST

Theory of Distributed Systems Group

Stephan Holzer

From ST-Verification to MST-Approximation

Given: G and subgraph H

Use α-approximation for MST to decide if **H** is ST

Theory of Distributed Systems Group

Stephan Holzer

From ST-Verification to MST-Approximation

Given: G and subgraph H

Use α-approximation for MST to decide if H is ST

Observe: iff **H** is ST, **H** is MST of weight n-1

Observe: iff H is ST, no α -MST besides H

lassachusetts Institute of Technology

Thus: α -approximating a MST takes $\Omega(n^{1/2})$

Theory of Distributed Systems Group

Stephan Holzer

Three steps of reduction

Comparison of the Techniques

Theory of Distributed Systems Group

Stephan Holzer

Comparison of the Techniques

yes	yes
yes	yes
Ω(n)	Ω(n ^{1/2})
3	O(log n)
>15	>22
	yes Ω(n) 3

Stephan Holzer w

Summary

Thanks!

Theory of Distributed Systems Group

Stephan Holzer www.stephanholzer.com

