1-1

Communication Complexity for

Distributed Graphs

Qin Zhang

Indiana University Bloomington

ADGA'16,
September 26, 2016



Graph data

Massive graph, stored in multiple machines

Machines communicate (by message passing) with
each other to answer queries
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The coordinator model

The coordinator model: We have k machines (sites) and one
central server (coordinator).

— Each site has a 2-way comm. channel with the coordinator.

— Each site has a piece of data x;.

— Computation in rounds but no constraint on the message size

— Task: compute f(xi,...,Xxx) together via comm., for some f.
— Goal: minimize total communication
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Coordinator VS k-machine

S
C Sk 52
5 S, 53 e Sk 53
coordinator model k-machine model

(Klauck, Nanongkai, Pandurangan,
Robinson SODA 2015)
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B The coordinator model has star comm. topology,
k-machine has cliqgue comm. topology,

but they differ up to a factor of 2 in terms of total comm.
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B The coordinator model has star comm. topology,
k-machine has cliqgue comm. topology,

but they differ up to a factor of 2 in terms of total comm.

B The coordinator model focuses on the comm. complexity,

k-machine focuses on the round complexity (or, time), given the
bandwidth of each comm. channel B

but an Q(C) comm. LB for coordinator also gives Q(C/(k* - B))

. round LB for k-machine



Coordinator VS k-machine
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S1
C Sk S,
51 52 53 e o o Sk 53
coordinator model k-machine model
Today (Klauck, Nanongkai, Pandurangan,

Robinson SODA 2015)

B The coordinator model has star comm. topology,

k-machine has cliqgue comm. topology,
but they differ up to a factor of 2 in terms of total comm.

The coordinator model focuses on the comm. complexity,

k-machine focuses on the round complexity (or, time), given the
bandwidth of each comm. channel B

but an Q(C) comm. LB for coordinator also gives Q(C/(k* - B))
round LB for k-machine



Input layout

®m  Edge partition: Edges are stored among the k
sites (may allow duplications).

" Node partition: Nodes (together with all their
adjacent edges) are partitioned among the k sites.

Note: each edge is stored in two sites.
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Input layout

®m  Edge partition: Edges are stored among the k
sites (may allow duplications). Today

" Node partition: Nodes (together with all their
adjacent edges) are partitioned among the k sites.

Note: each edge is stored in two sites.
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Case study 1: Connectivity — the value of input layout

® Connectivity: Test if a graph is connected.
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Case study 1: Connectivity — the value of input layout

® Connectivity: Test if a graph is connected.

" For edge partition, we get a LB of Q(kn/ log k) bits.
(Woodruff and Zhang, DISC 2013) Will show today.
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Case study 1: Connectivity — the value of input layout

® Connectivity: Test if a graph is connected.

" For edge partition, we get a LB of Q(kn/ log k) bits.
(Woodruff and Zhang, DISC 2013) Will show today.

® For node partition, a sketching algorithm by Ahn, Guha,
McGregor (SODA 2012) uses O(n polylog n) bits.
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Case study 2: Diameter — the value of approximation

® Diameter: Compute the diameter of the graph.
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Case study 2: Diameter — the value of approximation

7-2

® Diameter: Compute the diameter of the graph.

" (Implicitly by Braverman et al. FOCS 2013;
edge partition with duplications):
The comm. cost of exact computation is Q(km) bits
(m : #edges).



Case study 2: Diameter — the value of approximation

® Diameter: Compute the diameter of the graph.

" (Implicitly by Braverman et al. FOCS 2013;
edge partition with duplications):

The comm. cost of exact computation is 2(km) bits
(m : #edges).

" Exists an algorithm (a distributed implementation of an
algo. by Dor, Halperin and Zwick, SICOMP 2000) with
comm. O(kn'->) if an approx. of additive 2 is allowed.
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Case study 3: Matching — just hard

® Matching: Compute the maximum matching of the graph.
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Case study 3: Matching — just hard

® Matching: Compute the maximum matching of the graph.

® For any a < 1, the comm. needed for computing a
a-approximation is Q(a?nk).
(Huang, Radunovic, Vojnovic and Zhang, STACS 2015)

Almost node partition (bipartite graph; left nodes with
their adjacent edges are partitioned). Will show today.
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Case study 3: Matching — just hard

® Matching: Compute the maximum matching of the graph.

® For any a < 1, the comm. needed for computing a
a-approximation is Q(a?nk).
(Huang, Radunovic, Vojnovic and Zhang, STACS 2015)

Almost node partition (bipartite graph; left nodes with
their adjacent edges are partitioned). Will show today.

" There is a matching UB for any a < 1/2
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How to prove these LB results?
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How to prove these LB results?

Using multi-party communication complexity



Basics on communication complexity

Can be easily extended to multiple players.

o R°(f): maxy, [M(x,y)|, [N(x,y)| is the length of the transcript on
input x, y. I is randomized, and lN(x, y) # f(x,y) w.pr. at most ¢

for any (x,y).
o D)(f): maxs,, [M(x,y)|. N is deterministic, and M(x, y) # f(x,y)
for at most a § fraction of (x, y) under distribution .

o ED(f): EpyyoulM(x,y)|. M is deterministic, and M(x,y) # f(x,y)
for at most a § fraction of (x,y) under distribution .

Easy direction of Yao's Lemma: R°(f) > max, Dg(f).
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direct-sum type theorem in the coordinator model

f.: X xY—{01}
(4 1s a distribution over X x ).

f&s : XK x Y — {0,1} is the problem of computing
f(x1,y)V f(xe,y) V...V f(xk,y) in the coordinator model,
where P; has input x; € X for each i € [k], and the
coordinator has y € ).

v is a distribution on X% x Y: First pick (X1, Y) ~ u, and
then pick X3, ..., X, from the conditional distribution p | Y.



A direct-sum type theorem in the coordinator model

frXxY —{0,1)

(4 1s a distribution over X x ).

f&s : XK x Y — {0,1} is the problem of computing
f(x1,y)V f(x2,¥) V...V f(xk,y) in the coordinator model,

where P; has input x; € X for each i € [k], and the
coordinator has y € ).

v is a distribution on X% x Y: First pick (X1, Y) ~ u, and
then pick X3, ..., X, from the conditional distribution p | Y.

Theorem (direct-sum). Forany f : X x Y — {0,1} and
any distribution p on X' x Y for which p(f~1(1)) < 1/k°, we

have D,}/k3(f(§R) — Q(k . ED;/(lOOkZ)(f)). (will prove later)
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Y CA{1,...,n

Exists a hard distribution 735, under which

IXNY|=1(YES instance) w.p. 3 and
IXNY| =0 (NO instance) w.p. 1 — 8.

Theorem. (Generalization of [Razborov '90, BJKS '04])
EDY/'(2-DISJ) = Q(n)
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Y C{L,...,n}

Exists a hard distribution 735, under which

IXNY|=1(YES instance) w.p. 3 and
IXNY| =0 (NO instance) w.p. 1 — 8.

Theorem. (Generalization of [Razborov '90, BJKS '04])
EDY/'(2-DISJ) = Q(n)

Let = 75 with 8 = 1/k?



LB for Connectivity

(Woodruff and Zhang, DISC 2013)



A meta-problem: THRESH

In the THRESHJ problem, site P; (i € [k]) holds an n-bit
vector x; = {Xj1,...,Xin}, and the k sites want to compute

0, if Zje[n](\/ie[k]xi,j) <0,

THRESHg (X1, ..., xk) = { 1, if > icm(Viewxij) = 0+ 1.
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THRESHg (X1, ..., xk) = { 1, if > icm(Viewxij) = 0+ 1.

Theorem 3 a 0 and a distribution ¢, DY/* (THRESH) = Q(kn).
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A meta-problem: THRESH

In the THRESHJ problem, site P; (i € [k]) holds an n-bit
vector x; = {Xj1,...,Xin}, and the k sites want to compute

0, if Zje[n](vie[k]xiaf) <4,

THRESHG(x1, ..., xx) = { 1, if > icm(Viewxij) = 0+ 1.

Theorem 3 a 0 and a distribution ¢, DY/* (THRESH) = Q(kn).
Corollary RY/3(THRESH?) = Q(kn/ log k)

The proof framework:

1. Choose f to be 2-DISJ with input distribution g,
and denote f5x by OR-DISJ and its distribution v
Apply direct-sum:
DL/%’(OR-DISJ) = Q(k - EDY/ ) (2-DISJ)) = Q(kn).
2. Show for (Xi1,..., Xk, Y) ~ v, whp,
OR-DISJ(X1,..., Xk, Y) = THRESHy(Xi, ..., Xk) for some 6.
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A reduction from THRESH to Connectivity

Reduction: an input (Xi,...,Xx) for THRESH = a graph.

Each P; creates an edge (uj, v;) for each X;; = 1. In addition, the
coordinator reconstructs Y, and then creates a path containing
{v; | j € Y} and a path containing {v; | j € [r]\Y}.

v | j ey liey
Viiy1+1 Vilyi+2 Viy|+3 Vin Vit Viz Viiy|
-0-@ @ -9 *-00—0
" THRESH(X, ..., X;) = 1
uy u» us uy

(ui, v;j) exists (the graph is connected) if and only if X;j =1
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Other problems

Can prove LBs for a number of problems

using similar reductions from THRESH.
(Woodruff and Zhang, 2013)

e Cycle-freeness
e Bipartiteness
e Triangle-freeness

e #Connected components
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Proof of the direct-sum theorem

DL/¥ (F) = Q(k - EDY/1%%)(£))



Proof of the direct-sum theorem

Theorem (direct-sum). For any f : X x Y — {0,1} and any
distribution 1 on X' x ) for which p(f (1)) < 1/k*, we have

D (£k) = Q(k - EDY 1) (£Y).
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Proof of the direct-sum theorem

Theorem (direct-sum). For any f : X x Y — {0,1} and any
distribution 1 on X' x ) for which p(f (1)) < 1/k*, we have

DY (fh) = Q(k - EDY/ OO (£y).

The proof is by a reduction C

from a 2-player problem to a
k-site problem. / i \

51 e o o SI e o o Sk
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Proof of the direct-sum theorem

18-3

Theorem (direct-sum). For any f : X x Y — {0,1} and any
distribution 1 on X x Y for which u(f~'(1)) < 1/k*, we have

DY (fh) = Q(k - EDY/ OO (£y).

The proof is by a reduction c| Bob plays

from a 2-player problem to a /

k-site problem.
Alice plays

1. Alice and Bob have input
(X, Y) ~ p (u(f(1) < 1/k7)

2. Input reduction: Alice picks a random site S; and assigns it with input
X; = X. Bob plays the coordinator C and the rest kK — 1 sites. He assigns
C with input Y, and S; (i #£ 1) with input Xi ~ u|Y.



Proof of the direct-sum theorem
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Theorem (direct-sum). For any f : X x Y — {0,1} and any
distribution 1 on X x Y for which u(f~'(1)) < 1/k*, we have

DY (fh) = Q(k - EDY/ OO (£y).

The proof is by a reduction c| Bob plays

from a 2-player problem to a /

k-site problem.
Alice plays

1. Alice and Bob have input
(X, Y) ~ p (u(f(1) < 1/k7)

2. Input reduction: Alice picks a random site S; and assigns it with input
X; = X. Bob plays the coordinator C and the rest kK — 1 sites. He assigns
C with input Y, and S; (i #£ 1) with input Xi ~ u|Y.

3. They run a protocol for 5z, w.pr. 1 — % f(Xi,Y) =0 for all i # [, thus
(X, .., X, Y) = (XL, Y) V...V (X, Y) = f(X,Y) = f(X,Y).



Proof of the direct-sum theorem (cont.)

1. Alice and Bob have input
(X, Y) ~ p (u(fH(1)) < 1/k7)

2. Input reduction: Alice picks a
random site S; and assigns it with
input X; = X. Bob plays the

coordinator C and the rest kK — 1 /

sites. He assigns C with input Y,
and S; (i # 1) with input X; ~ ulY.

Alice plays

3. They run a protocol for 5z, w.pr. 1 — % f(Xi,Y) =0 forall i # [, thus
(X, .., X, Y) = (XL, Y) V...V (X, Y) = f(X,Y) = f(X,Y).

4. They repeat the input reduction 3 times (using the same (X, Y)) and
run the protocol for f&; on each input, the probability that at least in one
run (which Bob knows), f(X;,Y)=0foralli#/,is1—1/k>

Plus the error prob. of each run is at most 1/k>, we get a protocol for f
under input dist. i that succeeds w.pr. O(1/k) < 1/(100k>).
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Proof of the direct-sum theorem (cont.)

1. Alice and Bob have input E[CC(Alice, Bob)] = % CC(k sites)
(X, Y) ~ p (u(fH(1)) < 1/k%)

2. Input reduction: Alice picks a
random site S; and assigns it with
input X; = X. Bob plays the

coordinator C and the rest kK — 1 /

sites. He assigns C with input Y,
and S; (i # 1) with input X; ~ ulY.

C Bob plays

Alice plays

3. They run a protocol for 5z, w.pr. 1 — % f(Xi,Y) =0 forall i # [, thus
(X, .., X, Y) = (XL, Y) V...V (X, Y) = f(X,Y) = f(X,Y).

4. They repeat the input reduction 3 times (using the same (X, Y)) and
run the protocol for f&; on each input, the probability that at least in one
run (which Bob knows), f(X;,Y)=0foralli#/,is1—1/k>

Plus the error prob. of each run is at most 1/k>, we get a protocol for f
under input dist. i that succeeds w.pr. O(1/k) < 1/(100k>).
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Proof of the direct-sum theorem (cont.)

1. Alice and Bob have input E[CC(Alice, Bob)] = % CC(k sites)
(X, V) ~p (u(fH(1)) S 1/K)  gpl/a0%) () — ¢

2. Input reduction: Alice picks a
random site S; and assigns it with
input X; = X. Bob plays the

coordinator C and the rest kK — 1 /

sites. He assigns C with input Y,
and S; (i # 1) with input X; ~ ulY.

C Bob plays

Alice plays

3. They run a protocol for 5z, w.pr. 1 — % f(Xi,Y) =0 forall i # [, thus
(X, .., X, Y) = (XL, Y) V...V (X, Y) = f(X,Y) = f(X,Y).

4. They repeat the input reduction 3 times (using the same (X, Y)) and
run the protocol for f&; on each input, the probability that at least in one
run (which Bob knows), f(X;,Y)=0foralli#/,is1—1/k>

Plus the error prob. of each run is at most 1/k>, we get a protocol for f
under input dist. i that succeeds w.pr. O(1/k) < 1/(100k>).
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Proof of the direct-sum theorem (cont.)

1. Alice and Bob have input E[CC(Alice, Bob)] = % CC(k sites)
(X, ¥) ~p (u(F(1)) S1/K%)  ppl/0%) ey — ¢ L/ (f5) = Q(kC)

2. Input reduction: Alice picks a
random site S; and assigns it with
input X; = X. Bob plays the

coordinator C and the rest kK — 1 /

sites. He assigns C with input Y,
and S; (i # 1) with input X; ~ ulY.

C Bob plays

Alice plays

3. They run a protocol for 5z, w.pr. 1 — % f(Xi,Y) =0 forall i # [, thus
(X, .., X, Y) = (XL, Y) V...V (X, Y) = f(X,Y) = f(X,Y).

4. They repeat the input reduction 3 times (using the same (X, Y)) and
run the protocol for f&; on each input, the probability that at least in one
run (which Bob knows), f(X;,Y)=0foralli#/,is1—1/k>

Plus the error prob. of each run is at most 1/k>, we get a protocol for f
under input dist. i that succeeds w.pr. O(1/k) < 1/(100k>).
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LB for Matching

(Huang, Radunovic, Vojnovic and Zhang, STACS 2015)

Present a "fake” proof to show the main ideas.
Assume the approximation « is a constant.
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The hard input graph

How does the hard input graph look like?

m Large set of “noisy” edges,
but form a small matching

m  Small set of “important” edges,
but form a large matching
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The hard input graph (cont.)

m Consider a 2n-vertex bipartite graph G = (U, V, E)

(assume k = n; general case discussed later)
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The hard input graph (cont.)

m Consider a 2n-vertex bipartite graph G = (U, V, E)

(assume k = n; general case discussed later)

® Player / gets the edges incident to u;
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The hard input graph (cont.)

m Consider a 2n-vertex bipartite graph G = (U, V, E)

(assume k = n; general case discussed later)

® Player / gets the edges incident to u;

Edges between U and V> are noisy edges
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The hard input graph (cont.)

m Consider a 2n-vertex bipartite graph G = (U, V, E)

(assume k = n; general case discussed later)

® Player / gets the edges incident to u;

V =ViuWw,
important
edge

U

H

Edges between U and V> are noisy edges

Edges between U and V; are important edges
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The hard input graph (cont.)

m Consider a 2n-vertex bipartite graph G = (U, V, E)

(assume k = n; general case discussed later)

® Player / gets the edges incident to u;

V =ViuWw,
important
edge

U

H

Edges between U and V> are noisy edges

Edges between U and V; are important edges

Say |Vi| =99 |V,
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The encoding of the graph

m Use y € {0,1}" to encode V

V5 Vi V =ViuV,

iImportant
edge
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The encoding of the graph

m Use y € {0,1}" to encode V

® Use x; € {0,1}" to encode the neighbors of u;

V =ViuW,

iImportant
edge
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The encoding of the graph

m Use y € {0,1}" to encode V

® Use x; € {0,1}" to encode the neighbors of u;

V =ViuWw,
iImportant
edge

U

Set each y; = 0/1 w.pr. 1/2. For each 1/,
if yj = 0 then set x; ; = 0/1 w.pr. 1/2; else if y1 = 1 then set x; ; =0
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The encoding of the graph

m Use y € {0,1}" to encode V

® Use x; € {0,1}" to encode the neighbors of u;

V = ViuV,
important
edge

U

Set each y; = 0/1 w.pr. 1/2. For each 1/,
if yj = 0 then set x; ; = 0/1 w.pr. 1/2; else if y1 = 1 then set x; ; =0

For each i, selet a random J s.t. y;, =1, and reset x; ; =0/1 w.pr. 1/2
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The relation to 2-DISJ

m Consider each pair (y, x;)

V =WViUuV,

Important
edge
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The relation to 2-DISJ

m Consider each pair (y, x;)

Form a 2-DISJ instance with a hard input distribution
(slightly different from the one used for connectivity)

V =WViUuV,

Important
edge
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The relation to 2-DISJ

m Consider each pair (y, x;)

Form a 2-DISJ instance with a hard input distribution
(slightly different from the one used for connectivity)

V =ViUW,
Important
edge

U

uj

If an important edge of u; is discovered when computing max matching,
then y and x; have a common element.
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The relation to 2-DISJ

m Consider each pair (y, x;)

Form a 2-DISJ instance with a hard input distribution
(slightly different from the one used for connectivity)

V =ViUW,
Important
edge

U

uj

If an important edge of u; is discovered when computing max matching,
then y and x; have a common element.

Proof ideas: Find a large matching — recover {2(n) important edges
— solve Q(n) instances of 2-DISJ — Q(n*) LB
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m For general kK < n
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m For general kK < n

make n/k independent instances of size k of the previous
hard instance

|

)N
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m For general kK < n

make n/k independent instances of size k of the previous
hard instance

M \ The cost of each instance is Q(k?)
n/k

)N
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m For general kK < n

make n/k independent instances of size k of the previous
hard instance

M The cost of each instance is Q(k?)
M The total cost is Q(nk)
n/k (direct-sum using information cost)

)N
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Related Work and

Future Direction



Related work

B Round LBs for a set of basic graph problems have been proved in
the k-machine model (node partition)

Work for problems with large output size; cannot be used for
decision-type problems

e Distributed Computation of Large-scale Graph Problems
by Klauck, Nanongkai, Pandurangan and Robinson, SODA 2015

e Tight Bounds for Distributed Graph Computations
by Pandurangan, Robinson and Scquizzato, CoRR 2016
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Related work

B Round LBs for a set of basic graph problems have been proved in
the k-machine model (node partition)

Work for problems with large output size; cannot be used for
decision-type problems

e Distributed Computation of Large-scale Graph Problems
by Klauck, Nanongkai, Pandurangan and Robinson, SODA 2015

e Tight Bounds for Distributed Graph Computations
by Pandurangan, Robinson and Scquizzato, CoRR 2016

B MultiCC on general comm. topology (not yet for graph problems)

e Topology Matters in Communication
by Chattopadhyay, Radhakrishnan, and Rudra, FOCS 2014

e The Range of Topological Effects on Communication
by Chattopadhyay and Rudra, ICALP 2015
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Future directions

®  The complexities of many graph problems are still
unknown in the coordinator model.

®  For the node-partition model, lower bounds for
decision-type problems, e.g., triangle counting,
size of the max matching, are not known.

Challenge: input sharing. Each edge is stored in
two machines. May need new techniques.

®  Techniques for proving round complexities in the
k-machine model are still limited.

Current approaches:
— (total comm.)/(total network bandwidth)
— ( info. a particular machine needs)/(single link bandwidth)

Some problems (matching?) may have higher round complexities
28-1



Thank youl

Questions?




