Communication Complexity for Distributed Graphs

Qin Zhang Indiana University Bloomington

ADGA'16, September 26, 2016

Graph data

Massive graph, stored in multiple machines Machines communicate (by message passing) with each other to answer queries **The coordinator model**: We have *k* machines (sites) and one central server (coordinator).

- Each site has a 2-way comm. channel with the coordinator.
- Each site has a piece of data x_i .
- Computation in rounds but no constraint on the message size
- Task: compute $f(x_1, \ldots, x_k)$ together via comm., for some f.
- Goal: minimize total communication

k-machine model

(Klauck, Nanongkai, Pandurangan, Robinson SODA 2015)

The coordinator model has star comm. topology, k-machine has clique comm. topology, but they differ up to a factor of 2 in terms of total comm.

k-machine model

(Klauck, Nanongkai, Pandurangan, Robinson SODA 2015)

- The coordinator model has star comm. topology, k-machine has clique comm. topology, but they differ up to a factor of 2 in terms of total comm.
- The coordinator model focuses on the comm. complexity, k-machine focuses on the round complexity (or, time), given the bandwidth of each comm. channel B
 but an Ω(C) comm. LB for coordinator also gives Ω(C/(k² · B)) round LB for k-machine

- The coordinator model has star comm. topology, k-machine has clique comm. topology, but they differ up to a factor of 2 in terms of total comm.
- The coordinator model focuses on the comm. complexity, k-machine focuses on the round complexity (or, time), given the bandwidth of each comm. channel B
 but an Ω(C) comm. LB for coordinator also gives Ω(C/(k² · B)) round LB for k-machine

Edge partition: Edges are stored among the k sites (may allow duplications).

- Node partition: Nodes (together with all their adjacent edges) are partitioned among the k sites.
 - Note: each edge is stored in two sites.

Edge partition: Edges are stored among the k sites (may allow duplications).
 Today

- Node partition: Nodes (together with all their adjacent edges) are partitioned among the k sites.
 - Note: each edge is stored in two sites.

Case study 1: Connectivity – the value of input layout

• Connectivity: Test if a graph is connected.

Case study 1: Connectivity – the value of input layout

- Connectivity: Test if a graph is connected.
- For edge partition, we get a LB of Ω(kn/log k) bits. (Woodruff and Zhang, DISC 2013) Will show today.

Case study 1: Connectivity – the value of input layout

- Connectivity: Test if a graph is connected.
- For edge partition, we get a LB of Ω(kn/log k) bits. (Woodruff and Zhang, DISC 2013) Will show today.
- For node partition, a sketching algorithm by Ahn, Guha, McGregor (SODA 2012) uses O(n poly log n) bits.

Diameter: Compute the diameter of the graph.

Diameter: Compute the diameter of the graph.

 (Implicitly by Braverman et al. FOCS 2013; edge partition with duplications):

The comm. cost of exact computation is $\Omega(km)$ bits (m : # edges).

Diameter: Compute the diameter of the graph.

- (Implicitly by Braverman et al. FOCS 2013; edge partition with duplications): The comm. cost of exact computation is Ω(*km*) bits (*m* : #edges).
- Exists an algorithm (a distributed implementation of an algo. by Dor, Halperin and Zwick, SICOMP 2000) with comm. $\tilde{O}(kn^{1.5})$ if an approx. of additive 2 is allowed.

Case study 3: Matching – just hard

Matching: Compute the maximum matching of the graph.

Case study 3: Matching – just hard

Matching: Compute the maximum matching of the graph.

For any α ≤ 1, the comm. needed for computing a α-approximation is Ω(α²nk). (Huang, Radunovic, Vojnovic and Zhang, STACS 2015) Almost node partition (bipartite graph; left nodes with their adjacent edges are partitioned). Will show today.

Case study 3: Matching – just hard

Matching: Compute the maximum matching of the graph.

 For any α ≤ 1, the comm. needed for computing a α-approximation is Ω(α²nk). (Huang, Radunovic, Vojnovic and Zhang, STACS 2015)
 Almost node partition (bipartite graph; left nodes with their adjacent edges are partitioned). Will show today.

• There is a matching UB for any $\alpha \leq 1/2$

How to prove these LB results?

How to prove these LB results?

Using multi-party communication complexity

Basics on communication complexity

Can be easily extended to multiple players.

- R^δ(f): max_{x,y} |Π(x, y)|, |Π(x, y)| is the length of the transcript on input x, y. Π is randomized, and Π(x, y) ≠ f(x, y) w.pr. at most δ for any (x, y).
- $D^{\delta}_{\mu}(f)$: $\max_{x,y} |\Pi(x,y)|$. Π is deterministic, and $\Pi(x,y) \neq f(x,y)$ for at most a δ fraction of (x, y) under distribution μ .
- $ED^{\delta}_{\mu}(f)$: $E_{(x,y)\sim\mu}|\Pi(x,y)|$. Π is deterministic, and $\Pi(x,y) \neq f(x,y)$ for at most a δ fraction of (x, y) under distribution μ .

Easy direction of Yao's Lemma: $R^{\delta}(f) \ge \max_{\mu} D^{\delta}_{\mu}(f)$.

 $f:\mathcal{X} imes\mathcal{Y} o \{0,1\}$

 μ is a distribution over $\mathcal{X} \times \mathcal{Y}$.

 $f_{OR}^{k}: \mathcal{X}^{k} \times \mathcal{Y} \to \{0, 1\}$ is the problem of computing $f(x_{1}, y) \vee f(x_{2}, y) \vee \ldots \vee f(x_{k}, y)$ in the coordinator model, where P_{i} has input $x_{i} \in \mathcal{X}$ for each $i \in [k]$, and the coordinator has $y \in \mathcal{Y}$.

 ν is a distribution on $\mathcal{X}^k \times \mathcal{Y}$: First pick $(X_1, Y) \sim \mu$, and then pick X_2, \ldots, X_k from the conditional distribution $\mu \mid Y$.

 $f:\mathcal{X} imes\mathcal{Y} o \{0,1\}$

 μ is a distribution over $\mathcal{X} \times \mathcal{Y}$.

 $f_{OR}^{k}: \mathcal{X}^{k} \times \mathcal{Y} \to \{0, 1\}$ is the problem of computing $f(x_{1}, y) \vee f(x_{2}, y) \vee \ldots \vee f(x_{k}, y)$ in the coordinator model, where P_{i} has input $x_{i} \in \mathcal{X}$ for each $i \in [k]$, and the coordinator has $y \in \mathcal{Y}$.

 ν is a distribution on $\mathcal{X}^k \times \mathcal{Y}$: First pick $(X_1, Y) \sim \mu$, and then pick X_2, \ldots, X_k from the conditional distribution $\mu \mid Y$.

Theorem (direct-sum). For any $f : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ and any distribution μ on $\mathcal{X} \times \mathcal{Y}$ for which $\mu(f^{-1}(1)) \leq 1/k^2$, we have $D_{\nu}^{1/k^3}(f_{OR}^k) = \Omega(k \cdot ED_{\mu}^{1/(100k^2)}(f))$. (will prove later)

2-DISJ

Exists a hard distribution τ_{β} , under which $|X \cap Y| = 1$ (YES instance) w.p. β and $|X \cap Y| = 0$ (NO instance) w.p. $1 - \beta$.

Theorem. (Generalization of [Razborov '90, BJKS '04]) $ED_{\tau_{\beta}}^{\beta/100}(2\text{-DISJ}) = \Omega(n)$

2-DISJ

Exists a hard distribution τ_{β} , under which $|X \cap Y| = 1$ (YES instance) w.p. β and $|X \cap Y| = 0$ (NO instance) w.p. $1 - \beta$.

Theorem. (Generalization of [Razborov '90, BJKS '04]) $ED_{\tau_{\beta}}^{\beta/100}(2\text{-DISJ}) = \Omega(n)$

Let
$$\mu = au_{eta}$$
 with $eta = 1/k^2$

LB for Connectivity

(Woodruff and Zhang, DISC 2013)

A meta-problem: THRESH

In the THRESH^{*n*}_{θ} problem, site P_i ($i \in [k]$) holds an *n*-bit vector $x_i = \{x_{i,1}, \ldots, x_{i,n}\}$, and the *k* sites want to compute

$$\mathsf{THRESH}_{\theta}^{n}(x_{1},\ldots,x_{k}) = \begin{cases} 0, & \text{if } \sum_{j\in[n]}(\vee_{i\in[k]}x_{i,j}) \leq \theta, \\ 1, & \text{if } \sum_{j\in[n]}(\vee_{i\in[k]}x_{i,j}) \geq \theta+1. \end{cases}$$

In the THRESH^{*n*}_{θ} problem, site P_i ($i \in [k]$) holds an *n*-bit vector $x_i = \{x_{i,1}, \ldots, x_{i,n}\}$, and the *k* sites want to compute

$$\mathsf{THRESH}_{\theta}^{n}(x_{1},\ldots,x_{k}) = \begin{cases} 0, & \text{if } \sum_{j\in[n]}(\vee_{i\in[k]}x_{i,j}) \leq \theta, \\ 1, & \text{if } \sum_{j\in[n]}(\vee_{i\in[k]}x_{i,j}) \geq \theta+1. \end{cases}$$

Theorem $\exists a \theta and a distribution <math>\zeta$, $D_{\zeta}^{1/k^4}(\text{THRESH}_{\theta}^n) = \Omega(kn)$. **Corollary** $R^{1/3}(\text{THRESH}_{\theta}^n) = \Omega(kn/\log k)$ In the THRESH^{*n*}_{θ} problem, site P_i ($i \in [k]$) holds an *n*-bit vector $x_i = \{x_{i,1}, \ldots, x_{i,n}\}$, and the *k* sites want to compute

$$\mathsf{THRESH}_{\theta}^{n}(x_{1},\ldots,x_{k}) = \begin{cases} 0, & \text{if } \sum_{j\in[n]}(\bigvee_{i\in[k]}x_{i,j}) \leq \theta, \\ 1, & \text{if } \sum_{j\in[n]}(\bigvee_{i\in[k]}x_{i,j}) \geq \theta+1. \end{cases}$$

Theorem $\exists a \theta and a distribution <math>\zeta$, $D_{\zeta}^{1/k^4}(\text{THRESH}_{\theta}^n) = \Omega(kn)$. **Corollary** $R^{1/3}(\text{THRESH}_{\theta}^n) = \Omega(kn/\log k)$

The proof framework:

- 1. Choose f to be 2-DISJ with input distribution μ , and denote f_{OR}^{k} by OR-DISJ and its distribution ν Apply direct-sum: $D_{\nu}^{1/k^{3}}(OR-DISJ) = \Omega(k \cdot ED_{\mu}^{1/(100k^{2})}(2-DISJ)) = \Omega(kn).$
- 2. Show for $(X_1, \ldots, X_k, Y) \sim \nu$, whp, OR-DISJ $(X_1, \ldots, X_k, Y) = \text{THRESH}_{\theta}^n(X_1, \ldots, X_k)$ for some θ .

Reduction: an input $(X_1, ..., X_k)$ for THRESH \Rightarrow a graph. Each P_i creates an edge (u_i, v_j) for each $X_{i,j} = 1$. In addition, the coordinator reconstructs Y, and then creates a path containing $\{v_j \mid j \in Y\}$ and a path containing $\{v_j \mid j \in [r] \setminus Y\}$.

 (u_i, v_j) exists (the graph is connected) if and only if $X_{i,j} = 1$

Can prove LBs for a number of problems using similar reductions from THRESH. (Woodruff and Zhang, 2013)

- Cycle-freeness
- Bipartiteness
- Triangle-freeness
- #Connected components
- . . .

Proof of the direct-sum theorem

 $D_{\nu}^{1/k^{3}}(f_{\mathsf{OR}}^{k}) = \Omega(k \cdot ED_{\mu}^{1/(100k^{2})}(f))$

Theorem (direct-sum). For any $f : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ and any distribution μ on $\mathcal{X} \times \mathcal{Y}$ for which $\mu(f^{-1}(1)) \leq 1/k^2$, we have $D_{\nu}^{1/k^3}(f_{\mathsf{OR}}^k) = \Omega(k \cdot \mathsf{ED}_{\mu}^{1/(100k^2)}(f)).$

Theorem (direct-sum). For any $f : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ and any distribution μ on $\mathcal{X} \times \mathcal{Y}$ for which $\mu(f^{-1}(1)) \leq 1/k^2$, we have $D_{\nu}^{1/k^3}(f_{\mathsf{OR}}^k) = \Omega(k \cdot \mathsf{ED}_{\mu}^{1/(100k^2)}(f)).$

The proof is by a reduction from a 2-player problem to a *k*-site problem.

Theorem (direct-sum). For any $f : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ and any distribution μ on $\mathcal{X} \times \mathcal{Y}$ for which $\mu(f^{-1}(1)) \leq 1/k^2$, we have $D_{\nu}^{1/k^3}(f_{OR}^k) = \Omega(k \cdot \mathsf{ED}_{\mu}^{1/(100k^2)}(f)).$

2. Input reduction: Alice picks a random site S_l and assigns it with input $X_l = X$. Bob plays the coordinator C and the rest k - 1 sites. He assigns C with input Y, and S_i ($i \neq I$) with input $X_i \sim \mu | Y$.

Theorem (direct-sum). For any $f : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ and any distribution μ on $\mathcal{X} \times \mathcal{Y}$ for which $\mu(f^{-1}(1)) \leq 1/k^2$, we have $D_{\nu}^{1/k^3}(f_{OR}^k) = \Omega(k \cdot \mathsf{ED}_{\mu}^{1/(100k^2)}(f)).$

2. Input reduction: Alice picks a random site S_i and assigns it with input $X_i = X$. Bob plays the coordinator C and the rest k - 1 sites. He assigns C with input Y, and S_i $(i \neq I)$ with input $X_i \sim \mu | Y$.

3. They run a protocol for f_{OR}^k , w.pr. $1 - \frac{1}{k}$, $f(X_i, Y) = 0$ for all $i \neq I$, thus $f_{OR}^k(X_1, \ldots, X_k, Y) = f(X_1, Y) \lor \ldots \lor f(X_k, Y) = f(X_I, Y) = f(X, Y)$.

1. Alice and Bob have input $(X,Y)\sim \mu \;(\mu(f^{-1}(1))\leq 1/k^2)$

2. Input reduction: Alice picks a random site S_i and assigns it with input $X_i = X$. Bob plays the coordinator C and the rest k - 1 sites. He assigns C with input Y, and S_i $(i \neq I)$ with input $X_i \sim \mu | Y$. Bob plays $X_i \sim \mu | Y$.

3. They run a protocol for f_{OR}^k , w.pr. $1 - \frac{1}{k}$, $f(X_i, Y) = 0$ for all $i \neq I$, thus $f_{OR}^k(X_1, \ldots, X_k, Y) = f(X_1, Y) \lor \ldots \lor f(X_k, Y) = f(X_I, Y) = f(X, Y)$.

4. They repeat the input reduction 3 times (using the same (X, Y)) and run the protocol for f_{OR}^k on each input, the probability that at least in one run (which Bob knows), $f(X_i, Y) = 0$ for all $i \neq I$, is $1 - 1/k^3$. Plus the error prob. of each run is at most $1/k^3$, we get a protocol for f

under input dist. μ that succeeds w.pr. $O(1/k^3) \leq 1/(100k^2)$.

1. Alice and Bob have input $(X,Y)\sim \mu \; (\mu(f^{-1}(1))\leq 1/k^2)$

2. Input reduction: Alice picks a random site S_i and assigns it with input $X_i = X$. Bob plays the coordinator C and the rest k - 1 sites. He assigns C with input Y_i , \searrow and S_i ($i \neq I$) with input $X_i \sim \mu | Y$.

 $E[CC(Alice, Bob)] = \frac{1}{k} CC(k \text{ sites})$

3. They run a protocol for f_{OR}^k , w.pr. $1 - \frac{1}{k}$, $f(X_i, Y) = 0$ for all $i \neq I$, thus $f_{OR}^k(X_1, \ldots, X_k, Y) = f(X_1, Y) \lor \ldots \lor f(X_k, Y) = f(X_l, Y) = f(X, Y)$.

4. They repeat the input reduction 3 times (using the same (X, Y)) and run the protocol for f_{OR}^k on each input, the probability that at least in one run (which Bob knows), $f(X_i, Y) = 0$ for all $i \neq I$, is $1 - 1/k^3$.

Plus the error prob. of each run is at most $1/k^3$, we get a protocol for funder input dist. μ that succeeds w.pr. $O(1/k^3) \leq 1/(100k^2)$.

1. Alice and Bob have input $(X,Y) \sim \mu \; (\mu(f^{-1}(1)) \leq 1/k^2)$

2. Input reduction: Alice picks a random site S_i and assigns it with input $X_i = X$. Bob plays the coordinator C and the rest k - 1 sites. He assigns C with input Y_i , and S_i ($i \neq I$) with input $X_i \sim \mu | Y$.

 $E[CC(Alice, Bob)] = \frac{1}{k} CC(k \text{ sites})$ $ED_{\mu}^{1/(100k^2)}(f) = C$

3. They run a protocol for f_{OR}^k , w.pr. $1 - \frac{1}{k}$, $f(X_i, Y) = 0$ for all $i \neq I$, thus $f_{OR}^k(X_1, \ldots, X_k, Y) = f(X_1, Y) \lor \ldots \lor f(X_k, Y) = f(X_I, Y) = f(X, Y)$.

4. They repeat the input reduction 3 times (using the same (X, Y)) and run the protocol for f_{OR}^k on each input, the probability that at least in one run (which Bob knows), $f(X_i, Y) = 0$ for all $i \neq I$, is $1 - 1/k^3$.

Plus the error prob. of each run is at most $1/k^3$, we get a protocol for funder input dist. μ that succeeds w.pr. $O(1/k^3) \leq 1/(100k^2)$.

1. Alice and Bob have input $(X,Y)\sim \mu \;(\mu(f^{-1}(1))\leq 1/k^2)$

2. Input reduction: Alice picks a random site S_i and assigns it with input $X_i = X$. Bob plays the coordinator C and the rest k - 1 sites. He assigns C with input Y_i , \searrow and S_i ($i \neq I$) with input $X_i \sim \mu | Y$.

 $E[CC(Alice, Bob)] = \frac{1}{k} CC(k \text{ sites})$ $ED_{\mu}^{1/(100k^2)}(f) = C \quad D_{\nu}^{1/k^3}(f_{OR}^k) = \Omega(kC)$

3. They run a protocol for f_{OR}^k , w.pr. $1 - \frac{1}{k}$, $f(X_i, Y) = 0$ for all $i \neq I$, thus $f_{OR}^k(X_1, \ldots, X_k, Y) = f(X_1, Y) \lor \ldots \lor f(X_k, Y) = f(X_I, Y) = f(X, Y)$.

4. They repeat the input reduction 3 times (using the same (X, Y)) and run the protocol for f_{OR}^k on each input, the probability that at least in one run (which Bob knows), $f(X_i, Y) = 0$ for all $i \neq I$, is $1 - 1/k^3$.

Plus the error prob. of each run is at most $1/k^3$, we get a protocol for funder input dist. μ that succeeds w.pr. $O(1/k^3) \leq 1/(100k^2)$.

LB for Matching

(Huang, Radunovic, Vojnovic and Zhang, STACS 2015)

Present a "fake" proof to show the main ideas. Assume the approximation α is a constant.

How does the hard input graph look like?

- Large set of "noisy" edges, but form a small matching
- Small set of "important" edges, but form a large matching

• Consider a 2*n*-vertex bipartite graph G = (U, V, E)

(assume k = n; general case discussed later)

- Consider a 2n-vertex bipartite graph G = (U, V, E) (assume k = n; general case discussed later)
- Player i gets the edges incident to u_i

- Consider a 2n-vertex bipartite graph G = (U, V, E) (assume k = n; general case discussed later)
- Player i gets the edges incident to u_i

Edges between U and V_2 are noisy edges

- Consider a 2n-vertex bipartite graph G = (U, V, E) (assume k = n; general case discussed later)
- Player i gets the edges incident to u_i

Edges between U and V_2 are noisy edges Edges between U and V_1 are important edges

- Consider a 2n-vertex bipartite graph G = (U, V, E) (assume k = n; general case discussed later)
- Player i gets the edges incident to u_i

Edges between U and V_2 are noisy edges Edges between U and V_1 are important edges Say $|V_1| = 99 |V_2|$

• Use $y \in \{0,1\}^n$ to encode V

• Use $x_i \in \{0, 1\}^n$ to encode the neighbors of u_i

• Use $y \in \{0,1\}^n$ to encode V

• Use $x_i \in \{0, 1\}^n$ to encode the neighbors of u_i

Set each $y_j = 0/1$ w.pr. 1/2. For each i, if $y_j = 0$ then set $x_{i,j} = 0/1$ w.pr. 1/2; else if $y_1 = 1$ then set $x_{i,j} = 0$

• Use
$$y \in \{0,1\}^n$$
 to encode V

• Use $x_i \in \{0,1\}^n$ to encode the neighbors of u_i

Set each $y_j = 0/1$ w.pr. 1/2. For each i, if $y_j = 0$ then set $x_{i,j} = 0/1$ w.pr. 1/2; else if $y_1 = 1$ then set $x_{i,j} = 0$

For each *i*, selet a random J s.t. $y_J = 1$, and reset $x_{i,J} = 0/1$ w.pr. 1/2

• Consider each pair (y, x_i)

• Consider each pair (y, x_i)

Form a 2-DISJ instance with a hard input distribution (slightly different from the one used for connectivity)

• Consider each pair (y, x_i)

Form a 2-DISJ instance with a hard input distribution (slightly different from the one used for connectivity)

If an important edge of u_i is discovered when computing max matching, then y and x_i have a common element.

• Consider each pair (y, x_i)

Form a 2-DISJ instance with a hard input distribution (slightly different from the one used for connectivity)

If an important edge of u_i is discovered when computing max matching, then y and x_i have a common element.

Proof ideas: Find a large matching \rightarrow recover $\Omega(n)$ important edges \rightarrow solve $\Omega(n)$ instances of 2-DISJ $\rightarrow \Omega(n^2)$ LB

• For general $k \leq n$

• For general $k \leq n$

make n/k independent instances of size k of the previous hard instance

• For general $k \leq n$

make n/k independent instances of size k of the previous hard instance

• For general $k \leq n$

make n/k independent instances of size k of the previous hard instance

The cost of each instance is $\Omega(k^2)$

The total cost is $\Omega(nk)$ (direct-sum using information cost)

Related Work and Future Direction

Related work

 Round LBs for a set of basic graph problems have been proved in the k-machine model (node partition)

Work for problems with large output size; cannot be used for decision-type problems

- Distributed Computation of Large-scale Graph Problems by Klauck, Nanongkai, Pandurangan and Robinson, SODA 2015
- Tight Bounds for Distributed Graph Computations by Pandurangan, Robinson and Scquizzato, CoRR 2016

Related work

 Round LBs for a set of basic graph problems have been proved in the k-machine model (node partition)

Work for problems with large output size; cannot be used for decision-type problems

- Distributed Computation of Large-scale Graph Problems by Klauck, Nanongkai, Pandurangan and Robinson, SODA 2015
- Tight Bounds for Distributed Graph Computations by Pandurangan, Robinson and Scquizzato, CoRR 2016
- MultiCC on general comm. topology (not yet for graph problems)
 - Topology Matters in Communication
 by Chattopadhyay, Radhakrishnan, and Rudra, FOCS 2014
 - The Range of Topological Effects on Communication by Chattopadhyay and Rudra, ICALP 2015

Future directions

- The complexities of many graph problems are still unknown in the coordinator model.
- For the node-partition model, lower bounds for decision-type problems, e.g., triangle counting, size of the max matching, are not known.

Challenge: input sharing. Each edge is stored in two machines. May need new techniques.

Techniques for proving round complexities in the *k*-machine model are still limited.

Current approaches:

- (total comm.)/(total network bandwidth)
- (info. a particular machine needs)/(single link bandwidth)

Some problems (matching?) may have higher round complexities

Thank you! Questions?