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Graph data

Massive graph, stored in multiple machines

Machines communicate (by message passing) with
each other to answer queries
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The coordinator model

The coordinator model: We have k machines (sites) and one
central server (coordinator).

– Each site has a 2-way comm. channel with the coordinator.
– Each site has a piece of data xi .
– Computation in rounds but no constraint on the message size
– Task: compute f (x1, . . . , xk) together via comm., for some f .
– Goal: minimize total communication
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Coordinator VS k-machine
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(Klauck, Nanongkai, Pandurangan,
Robinson SODA 2015)
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The coordinator model has star comm. topology,
k-machine has clique comm. topology,

but they differ up to a factor of 2 in terms of total comm.
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The coordinator model has star comm. topology,
k-machine has clique comm. topology,

but they differ up to a factor of 2 in terms of total comm.

The coordinator model focuses on the comm. complexity,
k-machine focuses on the round complexity (or, time), given the
bandwidth of each comm. channel B

but an Ω(C) comm. LB for coordinator also gives Ω(C/(k2 · B))
round LB for k-machine
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The coordinator model focuses on the comm. complexity,
k-machine focuses on the round complexity (or, time), given the
bandwidth of each comm. channel B

but an Ω(C) comm. LB for coordinator also gives Ω(C/(k2 · B))
round LB for k-machine
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Input layout

Edge partition: Edges are stored among the k
sites (may allow duplications).

Node partition: Nodes (together with all their
adjacent edges) are partitioned among the k sites.

Note: each edge is stored in two sites.
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Edge partition: Edges are stored among the k
sites (may allow duplications).

Node partition: Nodes (together with all their
adjacent edges) are partitioned among the k sites.

Note: each edge is stored in two sites.

Today
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Case study 1: Connectivity – the value of input layout

Connectivity: Test if a graph is connected.



6-2

Case study 1: Connectivity – the value of input layout

Connectivity: Test if a graph is connected.

For edge partition, we get a LB of Ω(kn/ log k) bits.
(Woodruff and Zhang, DISC 2013) Will show today.
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Case study 1: Connectivity – the value of input layout

Connectivity: Test if a graph is connected.

For edge partition, we get a LB of Ω(kn/ log k) bits.
(Woodruff and Zhang, DISC 2013) Will show today.

For node partition, a sketching algorithm by Ahn, Guha,
McGregor (SODA 2012) uses O(n poly log n) bits.
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Case study 2: Diameter – the value of approximation

Diameter: Compute the diameter of the graph.
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Case study 2: Diameter – the value of approximation

Diameter: Compute the diameter of the graph.

(Implicitly by Braverman et al. FOCS 2013;
edge partition with duplications):

The comm. cost of exact computation is Ω(km) bits
(m : #edges).
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Case study 2: Diameter – the value of approximation

Diameter: Compute the diameter of the graph.

(Implicitly by Braverman et al. FOCS 2013;
edge partition with duplications):

The comm. cost of exact computation is Ω(km) bits
(m : #edges).

Exists an algorithm (a distributed implementation of an
algo. by Dor, Halperin and Zwick, SICOMP 2000) with
comm. Õ(kn1.5) if an approx. of additive 2 is allowed.
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Case study 3: Matching – just hard

Matching: Compute the maximum matching of the graph.
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Case study 3: Matching – just hard

Matching: Compute the maximum matching of the graph.

For any α ≤ 1, the comm. needed for computing a
α-approximation is Ω(α2nk).
(Huang, Radunovic, Vojnovic and Zhang, STACS 2015)

Almost node partition (bipartite graph; left nodes with
their adjacent edges are partitioned). Will show today.
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Case study 3: Matching – just hard

Matching: Compute the maximum matching of the graph.

For any α ≤ 1, the comm. needed for computing a
α-approximation is Ω(α2nk).
(Huang, Radunovic, Vojnovic and Zhang, STACS 2015)

Almost node partition (bipartite graph; left nodes with
their adjacent edges are partitioned). Will show today.

There is a matching UB for any α ≤ 1/2
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How to prove these LB results?
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How to prove these LB results?
Using multi-party communication complexity
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Basics on communication complexity

x y

f (x , y)

x y

Can be easily extended to multiple players.

• Rδ(f ): maxx,y |Π(x , y)|, |Π(x , y)| is the length of the transcript on
input x , y . Π is randomized, and Π(x , y) 6= f (x , y) w.pr. at most δ
for any (x , y).

• Dδ
µ(f ): maxx,y |Π(x , y)|. Π is deterministic, and Π(x , y) 6= f (x , y)

for at most a δ fraction of (x , y) under distribution µ.

• EDδ
µ(f ): E(x,y)∼µ|Π(x , y)|. Π is deterministic, and Π(x , y) 6= f (x , y)

for at most a δ fraction of (x , y) under distribution µ.

Easy direction of Yao’s Lemma: Rδ(f ) ≥ maxµ D
δ
µ(f ).
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A direct-sum type theorem in the coordinator model

f : X × Y → {0, 1}

µ is a distribution over X × Y.

f kOR : X k × Y → {0, 1} is the problem of computing
f (x1, y) ∨ f (x2, y) ∨ . . . ∨ f (xk , y) in the coordinator model,
where Pi has input xi ∈ X for each i ∈ [k], and the
coordinator has y ∈ Y.

ν is a distribution on X k × Y: First pick (X1,Y ) ∼ µ, and
then pick X2, . . . ,Xk from the conditional distribution µ | Y .



11-2

A direct-sum type theorem in the coordinator model

f : X × Y → {0, 1}

µ is a distribution over X × Y.

f kOR : X k × Y → {0, 1} is the problem of computing
f (x1, y) ∨ f (x2, y) ∨ . . . ∨ f (xk , y) in the coordinator model,
where Pi has input xi ∈ X for each i ∈ [k], and the
coordinator has y ∈ Y.

ν is a distribution on X k × Y: First pick (X1,Y ) ∼ µ, and
then pick X2, . . . ,Xk from the conditional distribution µ | Y .

Theorem (direct-sum). For any f : X × Y → {0, 1} and
any distribution µ on X × Y for which µ(f −1(1)) ≤ 1/k2, we

have D
1/k3

ν (f kOR) = Ω(k · ED1/(100k2)
µ (f )). (will prove later)
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2-DISJ

X ⊆ {1, . . . , n} Y ⊆ {1, . . . , n}

X ∩ Y = ∅?

Exists a hard distribution τβ , under which

|X ∩ Y | = 1 (YES instance) w.p. β and

|X ∩ Y | = 0 (NO instance) w.p. 1− β.

Theorem. (Generalization of [Razborov ’90, BJKS ’04])

ED
β/100
τβ (2-DISJ) = Ω(n)
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2-DISJ

X ⊆ {1, . . . , n} Y ⊆ {1, . . . , n}

X ∩ Y = ∅?

Exists a hard distribution τβ , under which

|X ∩ Y | = 1 (YES instance) w.p. β and

|X ∩ Y | = 0 (NO instance) w.p. 1− β.

Theorem. (Generalization of [Razborov ’90, BJKS ’04])

ED
β/100
τβ (2-DISJ) = Ω(n)

Let µ = τβ with β = 1/k2
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LB for Connectivity
(Woodruff and Zhang, DISC 2013)
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A meta-problem: THRESH

In the THRESHn
θ problem, site Pi (i ∈ [k]) holds an n-bit

vector xi = {xi,1, . . . , xi,n}, and the k sites want to compute

THRESHn
θ(x1, . . . , xk) =

{
0, if

∑
j∈[n](∨i∈[k]xi,j) ≤ θ,

1, if
∑

j∈[n](∨i∈[k]xi,j) ≥ θ + 1.
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A meta-problem: THRESH

In the THRESHn
θ problem, site Pi (i ∈ [k]) holds an n-bit

vector xi = {xi,1, . . . , xi,n}, and the k sites want to compute

THRESHn
θ(x1, . . . , xk) =

{
0, if

∑
j∈[n](∨i∈[k]xi,j) ≤ θ,

1, if
∑

j∈[n](∨i∈[k]xi,j) ≥ θ + 1.

Theorem ∃ a θ and a distribution ζ, D
1/k4

ζ (THRESHn
θ) = Ω(kn).

Corollary R1/3(THRESHn
θ) = Ω(kn/ log k)
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A meta-problem: THRESH

In the THRESHn
θ problem, site Pi (i ∈ [k]) holds an n-bit

vector xi = {xi,1, . . . , xi,n}, and the k sites want to compute

THRESHn
θ(x1, . . . , xk) =

{
0, if

∑
j∈[n](∨i∈[k]xi,j) ≤ θ,

1, if
∑

j∈[n](∨i∈[k]xi,j) ≥ θ + 1.

Theorem ∃ a θ and a distribution ζ, D
1/k4

ζ (THRESHn
θ) = Ω(kn).

Corollary R1/3(THRESHn
θ) = Ω(kn/ log k)

The proof framework:

1. Choose f to be 2-DISJ with input distribution µ,

and denote f kOR by OR-DISJ and its distribution ν

Apply direct-sum:

D
1/k3

ν (OR-DISJ) = Ω(k · ED1/(100k2)
µ (2-DISJ)) = Ω(kn).

2. Show for (X1, . . . ,Xk ,Y ) ∼ ν, whp,

OR-DISJ(X1, . . . ,Xk ,Y ) = THRESHn
θ(X1, . . . ,Xk) for some θ.
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A reduction from THRESH to Connectivity

Reduction: an input (X1, . . . ,Xk) for THRESH ⇒ a graph.

Each Pi creates an edge (ui , vj) for each Xi,j = 1. In addition, the

coordinator reconstructs Y , and then creates a path containing

{vj | j ∈ Y } and a path containing {vj | j ∈ [r ]\Y }.

u1 u2 u3 uk

vj|Y |+1
vj|Y |+2

vj|Y |+3
vjn vj1 vj2 vj|Y |

vj | j ∈ [r ]\Y vj | j ∈ Y

(ui , vj) exists (the graph is connected) if and only if Xi,j = 1

THRESH(X1, . . . ,Xk ) = 1
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Other problems

Can prove LBs for a number of problems
using similar reductions from THRESH.
(Woodruff and Zhang, 2013)

• Cycle-freeness

• Bipartiteness

• Triangle-freeness

• #Connected components

• . . .
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Proof of the direct-sum theorem

D
1/k3

ν (f kOR) = Ω(k · ED1/(100k2)
µ (f ))
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Theorem (direct-sum). For any f : X × Y → {0, 1} and any
distribution µ on X × Y for which µ(f −1(1)) ≤ 1/k2, we have

D
1/k3

ν (f kOR) = Ω(k · ED
1/(100k2)
µ (f )).

Proof of the direct-sum theorem
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Theorem (direct-sum). For any f : X × Y → {0, 1} and any
distribution µ on X × Y for which µ(f −1(1)) ≤ 1/k2, we have

D
1/k3

ν (f kOR) = Ω(k · ED
1/(100k2)
µ (f )).

Proof of the direct-sum theorem

The proof is by a reduction
from a 2-player problem to a
k-site problem.

· · ·S1 SI Sk

C

· · · · · ·S1 SI Sk

C

· · ·
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Theorem (direct-sum). For any f : X × Y → {0, 1} and any
distribution µ on X × Y for which µ(f −1(1)) ≤ 1/k2, we have

D
1/k3

ν (f kOR) = Ω(k · ED
1/(100k2)
µ (f )).

Proof of the direct-sum theorem

The proof is by a reduction
from a 2-player problem to a
k-site problem.

1. Alice and Bob have input
(X ,Y ) ∼ µ (µ(f −1(1)) ≤ 1/k2)

2. Input reduction: Alice picks a random site SI and assigns it with input
XI = X . Bob plays the coordinator C and the rest k − 1 sites. He assigns
C with input Y , and Si (i 6= I ) with input Xi ∼ µ|Y .

· · ·S1 SI Sk

C

· · ·
Alice plays

Bob plays

· · ·S1 SI Sk

C

· · ·
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Theorem (direct-sum). For any f : X × Y → {0, 1} and any
distribution µ on X × Y for which µ(f −1(1)) ≤ 1/k2, we have

D
1/k3

ν (f kOR) = Ω(k · ED
1/(100k2)
µ (f )).

Proof of the direct-sum theorem

The proof is by a reduction
from a 2-player problem to a
k-site problem.

1. Alice and Bob have input
(X ,Y ) ∼ µ (µ(f −1(1)) ≤ 1/k2)

2. Input reduction: Alice picks a random site SI and assigns it with input
XI = X . Bob plays the coordinator C and the rest k − 1 sites. He assigns
C with input Y , and Si (i 6= I ) with input Xi ∼ µ|Y .

3. They run a protocol for f kOR, w.pr. 1− 1
k

, f (Xi ,Y ) = 0 for all i 6= I , thus

f kOR(X1, . . . ,Xk ,Y ) = f (X1,Y ) ∨ . . . ∨ f (Xk ,Y ) = f (XI ,Y ) = f (X ,Y ).

· · ·S1 SI Sk

C

· · ·
Alice plays

Bob plays

· · ·S1 SI Sk

C

· · ·



19-1

Proof of the direct-sum theorem (cont.)

1. Alice and Bob have input
(X ,Y ) ∼ µ (µ(f −1(1)) ≤ 1/k2)

2. Input reduction: Alice picks a
random site SI and assigns it with
input XI = X . Bob plays the
coordinator C and the rest k − 1
sites. He assigns C with input Y ,
and Si (i 6= I ) with input Xi ∼ µ|Y .

4. They repeat the input reduction 3 times (using the same (X ,Y )) and
run the protocol for f kOR on each input, the probability that at least in one
run (which Bob knows), f (Xi ,Y ) = 0 for all i 6= I , is 1− 1/k3.

Plus the error prob. of each run is at most 1/k3, we get a protocol for f
under input dist. µ that succeeds w.pr. O(1/k3) ≤ 1/(100k2).

Alice plays

Bob plays

3. They run a protocol for f kOR, w.pr. 1− 1
k

, f (Xi ,Y ) = 0 for all i 6= I , thus

f kOR(X1, . . . ,Xk ,Y ) = f (X1,Y ) ∨ . . . ∨ f (Xk ,Y ) = f (XI ,Y ) = f (X ,Y ).

· · ·S1 SI Sk

C

· · · · · ·S1 SI Sk

C

· · ·
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Proof of the direct-sum theorem (cont.)

1. Alice and Bob have input
(X ,Y ) ∼ µ (µ(f −1(1)) ≤ 1/k2)

2. Input reduction: Alice picks a
random site SI and assigns it with
input XI = X . Bob plays the
coordinator C and the rest k − 1
sites. He assigns C with input Y ,
and Si (i 6= I ) with input Xi ∼ µ|Y .

4. They repeat the input reduction 3 times (using the same (X ,Y )) and
run the protocol for f kOR on each input, the probability that at least in one
run (which Bob knows), f (Xi ,Y ) = 0 for all i 6= I , is 1− 1/k3.

Plus the error prob. of each run is at most 1/k3, we get a protocol for f
under input dist. µ that succeeds w.pr. O(1/k3) ≤ 1/(100k2).

Alice plays

Bob plays

E[CC(Alice, Bob)] = 1
k

CC(k sites)

3. They run a protocol for f kOR, w.pr. 1− 1
k

, f (Xi ,Y ) = 0 for all i 6= I , thus

f kOR(X1, . . . ,Xk ,Y ) = f (X1,Y ) ∨ . . . ∨ f (Xk ,Y ) = f (XI ,Y ) = f (X ,Y ).

· · ·S1 SI Sk

C

· · · · · ·S1 SI Sk

C

· · ·
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Proof of the direct-sum theorem (cont.)

1. Alice and Bob have input
(X ,Y ) ∼ µ (µ(f −1(1)) ≤ 1/k2)

2. Input reduction: Alice picks a
random site SI and assigns it with
input XI = X . Bob plays the
coordinator C and the rest k − 1
sites. He assigns C with input Y ,
and Si (i 6= I ) with input Xi ∼ µ|Y .

4. They repeat the input reduction 3 times (using the same (X ,Y )) and
run the protocol for f kOR on each input, the probability that at least in one
run (which Bob knows), f (Xi ,Y ) = 0 for all i 6= I , is 1− 1/k3.

Plus the error prob. of each run is at most 1/k3, we get a protocol for f
under input dist. µ that succeeds w.pr. O(1/k3) ≤ 1/(100k2).

Alice plays

Bob plays

E[CC(Alice, Bob)] = 1
k

CC(k sites)

3. They run a protocol for f kOR, w.pr. 1− 1
k

, f (Xi ,Y ) = 0 for all i 6= I , thus

f kOR(X1, . . . ,Xk ,Y ) = f (X1,Y ) ∨ . . . ∨ f (Xk ,Y ) = f (XI ,Y ) = f (X ,Y ).

· · ·S1 SI Sk

C

· · · · · ·S1 SI Sk

C

· · ·

ED
1/(100k2)
µ (f ) = C
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Proof of the direct-sum theorem (cont.)

1. Alice and Bob have input
(X ,Y ) ∼ µ (µ(f −1(1)) ≤ 1/k2)

2. Input reduction: Alice picks a
random site SI and assigns it with
input XI = X . Bob plays the
coordinator C and the rest k − 1
sites. He assigns C with input Y ,
and Si (i 6= I ) with input Xi ∼ µ|Y .

4. They repeat the input reduction 3 times (using the same (X ,Y )) and
run the protocol for f kOR on each input, the probability that at least in one
run (which Bob knows), f (Xi ,Y ) = 0 for all i 6= I , is 1− 1/k3.

Plus the error prob. of each run is at most 1/k3, we get a protocol for f
under input dist. µ that succeeds w.pr. O(1/k3) ≤ 1/(100k2).

Alice plays

Bob plays

E[CC(Alice, Bob)] = 1
k

CC(k sites)

3. They run a protocol for f kOR, w.pr. 1− 1
k

, f (Xi ,Y ) = 0 for all i 6= I , thus

f kOR(X1, . . . ,Xk ,Y ) = f (X1,Y ) ∨ . . . ∨ f (Xk ,Y ) = f (XI ,Y ) = f (X ,Y ).

· · ·S1 SI Sk

C

· · · · · ·S1 SI Sk

C

· · ·

ED
1/(100k2)
µ (f ) = C D

1/k3

ν (f kOR) = Ω(kC)
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LB for Matching
(Huang, Radunovic, Vojnovic and Zhang, STACS 2015)

Present a ”fake” proof to show the main ideas.
Assume the approximation α is a constant.
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Small set of “important” edges,
but form a large matching

Large set of “noisy” edges,
but form a small matching

The hard input graph

How does the hard input graph look like?
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The hard input graph (cont.)

Consider a 2n-vertex bipartite graph G = (U,V ,E )
(assume k = n; general case discussed later)
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The hard input graph (cont.)

Consider a 2n-vertex bipartite graph G = (U,V ,E )

Player i gets the edges incident to ui

ui
U

(assume k = n; general case discussed later)
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The hard input graph (cont.)

Consider a 2n-vertex bipartite graph G = (U,V ,E )

Player i gets the edges incident to ui

Edges between U and V2 are noisy edges

V2

ui
U

(assume k = n; general case discussed later)
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The hard input graph (cont.)

Consider a 2n-vertex bipartite graph G = (U,V ,E )

Player i gets the edges incident to ui

Edges between U and V2 are noisy edges

Edges between U and V1 are important edges

V2

ui

V1

U

V = V1∪V2

important
edge
important
edge

(assume k = n; general case discussed later)
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The hard input graph (cont.)

Consider a 2n-vertex bipartite graph G = (U,V ,E )

Player i gets the edges incident to ui

Edges between U and V2 are noisy edges

Edges between U and V1 are important edges

V2

ui

V1

U

V = V1∪V2

important
edge
important
edge

(assume k = n; general case discussed later)

Say |V1| = 99 |V2|



23-1

The encoding of the graph

Use y ∈ {0, 1}n to encode V

ui

V2 V1 V = V1∪V2

U

important
edge
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The encoding of the graph

Use y ∈ {0, 1}n to encode V

Use xi ∈ {0, 1}n to encode the neighbors of ui

ui

V2 V1 V = V1∪V2

U

important
edge
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The encoding of the graph

Use y ∈ {0, 1}n to encode V

Use xi ∈ {0, 1}n to encode the neighbors of ui

Set each yj = 0/1 w.pr. 1/2. For each i ,
if yj = 0 then set xi,j = 0/1 w.pr. 1/2; else if y1 = 1 then set xi,j = 0

ui

V2 V1 V = V1∪V2

U

important
edge
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The encoding of the graph

Use y ∈ {0, 1}n to encode V

Use xi ∈ {0, 1}n to encode the neighbors of ui

Set each yj = 0/1 w.pr. 1/2. For each i ,
if yj = 0 then set xi,j = 0/1 w.pr. 1/2; else if y1 = 1 then set xi,j = 0

For each i , selet a random J s.t. yJ = 1, and reset xi,J = 0/1 w.pr. 1/2

ui

V2 V1 V = V1∪V2

U

important
edge
important
edge
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The relation to 2-DISJ

Consider each pair (y , xi )

ui

important
edge

V2 V1 V = V1∪V2

U
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The relation to 2-DISJ

Consider each pair (y , xi )

Form a 2-DISJ instance with a hard input distribution
(slightly different from the one used for connectivity)

ui

important
edge

V2 V1 V = V1∪V2

U
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The relation to 2-DISJ

Consider each pair (y , xi )

Form a 2-DISJ instance with a hard input distribution
(slightly different from the one used for connectivity)

If an important edge of ui is discovered when computing max matching,
then y and xi have a common element.

ui

important
edge

V2 V1 V = V1∪V2

U
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The relation to 2-DISJ

Consider each pair (y , xi )

Form a 2-DISJ instance with a hard input distribution
(slightly different from the one used for connectivity)

If an important edge of ui is discovered when computing max matching,
then y and xi have a common element.

Proof ideas: Find a large matching → recover Ω(n) important edges
→ solve Ω(n) instances of 2-DISJ → Ω(n2) LB

ui

important
edge

V2 V1 V = V1∪V2

U
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General k

For general k ≤ n
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General k

For general k ≤ n

make n/k independent instances of size k of the previous
hard instance

n/k
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General k

For general k ≤ n

make n/k independent instances of size k of the previous
hard instance

The cost of each instance is Ω(k2)

n/k
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General k

For general k ≤ n

make n/k independent instances of size k of the previous
hard instance

The cost of each instance is Ω(k2)

The total cost is Ω(nk)
(direct-sum using information cost)n/k
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Related Work and

Future Direction
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Round LBs for a set of basic graph problems have been proved in
the k-machine model (node partition)

Work for problems with large output size; cannot be used for
decision-type problems

• Distributed Computation of Large-scale Graph Problems

by Klauck, Nanongkai, Pandurangan and Robinson, SODA 2015

• Tight Bounds for Distributed Graph Computations

by Pandurangan, Robinson and Scquizzato, CoRR 2016

Related work
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Round LBs for a set of basic graph problems have been proved in
the k-machine model (node partition)

Work for problems with large output size; cannot be used for
decision-type problems

• Distributed Computation of Large-scale Graph Problems

by Klauck, Nanongkai, Pandurangan and Robinson, SODA 2015

• Tight Bounds for Distributed Graph Computations

by Pandurangan, Robinson and Scquizzato, CoRR 2016

Related work

MultiCC on general comm. topology (not yet for graph problems)

• Topology Matters in Communication

by Chattopadhyay, Radhakrishnan, and Rudra, FOCS 2014

• The Range of Topological Effects on Communication

by Chattopadhyay and Rudra, ICALP 2015
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Future directions

For the node-partition model, lower bounds for
decision-type problems, e.g., triangle counting,
size of the max matching, are not known.

Challenge: input sharing. Each edge is stored in
two machines. May need new techniques.

Techniques for proving round complexities in the
k-machine model are still limited.

Current approaches:
– (total comm.)/(total network bandwidth)
– ( info. a particular machine needs)/(single link bandwidth)

Some problems (matching?) may have higher round complexities

The complexities of many graph problems are still
unknown in the coordinator model.
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Thank you!
Questions?


