Recent Algorithmic Advances in Population Protocols

Rati Gelashvili
Population Protocols
[Angluin, Aspnes, Diamadi, Fischer, Peralta'04]

- **Nodes**: *simple, identical agents*
 - Each node is the same finite state automaton
 - For example: a molecule

- **Interactions** are *pairwise*
 - According to a scheduler, e.g. random, weakly or globally fair
 - Among the edges of an underlying communication graph
 - Nodes update their state following interactions

- **Computation** is performed *collectively*
 - Global configuration: #nodes in each state
 - No “fixed” decision time
In This Talk

Focus on a clique as an underlying graph

- Can be generalized to other communication graphs: [Draief, Vojnovic’12], [Sudo, Ooshita, Kakugawa, Masuzawa’12], [Mertzios, Nikoletseas, Raptopoulos, Spirakis’14]

Overview the model

- Number of interesting and studied settings and tasks

Essential Techniques for Protocol Design & Application Examples

- Phase Clocks
- Synthetic Coins
- Population Splitting
Computation

Stabilization:
Given an execution sequence up to a configuration, configuration & all reachable configurations (must) satisfy a given predicate P
• strongest possible requirement

Convergence:
From a configuration in a given interaction sequence, configuration & all reachable configurations satisfy a given predicate P
• good enough for many practical applications
• allows bypassing strong lower bounds for stabilization [Doty, Soloveichik’15, …]

Always correct vs with high probability correct
Complexity Measures: Time

Meaningful requirements for scheduler
- weakly fair: *nodes interacting*
- globally fair: *reachable configurations reached*
- probabilistic: *most commonly, uniform random*

Stabilization (parallel) Time: $E[\# \text{ interactions until stabilization}] / n$

Convergence (parallel) Time: $E[\# \text{ interactions until convergence}] / n$

Parallel time: interpreted as interactions per node, or number of rounds
Complexity Measures: Space

State Complexity: \# distinct states per node

Most important measure
• Critical to be as small as possible
• Can be super-constant
What Can We Compute?

We can perform interactions of the type

Computing OR

rumor (epidemy) spreading: takes $O(\log n)$ parallel time w.h.p.
Tasks: Majority

Two initial states: \(A, B \)

Output:
- \(A \) if \(\#A > \#B \) initially.
- \(B \), otherwise.

• The cell cycle switch implements approximate majority [Cardelli, Csikasz-Nagy’12]
• Implementation in DNA: [Chen, Dalchau, Srnivas, Philipps, Cardelli, Soloveichik, Seelig’13, Nature Nanotechnology]
Example 3-State Protocol for Approximate Majority

States: A B C

State Transition Rules:

Initial Discrepancy
\[\varepsilon = \frac{|A - B|}{n} \geq \frac{1}{n}. \]

Given \(n \) nodes and discrepancy \(\varepsilon > \log n / \sqrt{n} \), the running time is \(O(\text{polylog } n) \)

Error probability can be as high as constant for lower discrepancy.

[Angluin, Aspnes, Eisenstat’08, Draief, Vojnovic’12]
Tasks: Leader Election

Input:
• All nodes start in the same initial state

Output:
• Exactly one node is in a “leader” state, remains leader forever

Correct, but slow
Example: Leader-Minion Algorithm

Idea: use eliminated nodes as minions

If two contenders have values $c \log n$ apart, with constant probability, after $O(n \log n)$ interactions, one of them will not be a contender.

For any two contenders, after $O(n \log^2 n)$ interactions, with constant probability, their values will be $c \log n$ apart.
Additional Info

Bootstrapping protocols
• from with high probability to always correct

Other tasks
• Plurality, Counting, Naming

Other Settings
• Self-stabilization: possibly too hard for this model
• loose Stabilization: allow temporary divergence
• robustness: leaderless protocols, resilience to leaks
Population Protocol Design Toolkit

1. Phase Clocks
 [Angluin, Aspnes, Eisenstat, Ruppert’07]

Allows agents to have a common notion of time
 • collectively count *phases* $O(n \log n)$ interactions
 • original construction used constant states, required a *leader*

Limited use in algorithm design until lately:
 • *Leaderless* phase clocks with $O(\log n)$ states [Alistarh, Aspnes, Gelashvili’17]
 • *Junta-based* phase clocks with $O(\log \log n)$ states [Gasieniec, Stachowiak’17]
Leaderless Phase Clock: 2-Choice Load Balancing

n empty bins, m >> n rounds, in each round
 • choose two bins at random
 • pick the bin with fewer balls, add a new ball

Theorem [Peres, Talwar, Wieder’15]: at any time, the difference between maximum and minimum number of balls in bins is at most $O(\log n)$, with high probability.
Leaderless Phase Clock

Nodes simulate 2-choice process

..modulo $c \log n$, with wraparound

..possible with high probability when c is large enough, such that the $O(\log n)$ gap is smaller than $c \log n$
Junta-based clock \cite{GS17} works in two stages
- elect a junta of $n^{1-\varepsilon}$ nodes (uses $O(\log \log n)$ states)
- implement and analyze a phase clock suggested by \cite{AAER07}

Follow up by \cite{BerFriedKaaKliRad18}:
- possible to reuse $O(\log \log n)$ states after the first stage
- elegant and simplified exposition of \cite{GS17}

Hierarchy of phase clocks \cite{KosUzn18}:
- count in phases of $O(n \log^k n)$ interactions for parameter k
- compute semi-linear predicates fast without a leader extending \cite{AngAspEis08}
2. Synthetic coins

[Alistarh, Aspnes, Eisenstat, Gelashvili, Rivest’17]

The state transition function of population protocols is deterministic

- could randomization help in algorithm design?
- yes, e.g. loosely-stabilizing leader election \textit{if} nodes have access to uniform random bits [Sudo, Ooshita, Kakugawa, Masuzawa’14]

But there is a source of randomness: the scheduler.

Extract \textit{synthetic randomness}! (slight increase in state complexity)

[Cardelli, Kwiatkowska, Laurenti’16] introduced a similar construction, focusing on computability
Synthetic Coins

Simplest Algorithm:
• the state: a flip bit F, initially 0
• initialization: do four interactions, updating $F = 1 - F'$
• simulated coin flip: use F of the interaction partner

Analyzed as a random walk on a hypercube
• after constant parallel time, roughly half 0s and 1s

Major improvements by [Berenbrink,Kaaser,Kling,Otterbach’18]
• generate coins with a specific (non-zero) bias
• get a stronger concentration by extending the initialization stage

Faster construction of a spectrum of coins with different biases
• by [Gasieniec,Stachowiak,Uznanski’18], extending first stage of [Gasieniec,Stachowiak’17]
3. Population Splitting

[Ghaffari, Parter’16]

Reduces state complexity when there are mutually exclusive roles
• node’s state does not need to encode all roles at once!

Idea used ad-hoc in some algorithms
• Leader-Minion [AG’15], each node either a leader or a minion at any time
• indicator for stage of the protocol and role [AAEGR’17], rest of the state shared

can be thought of as some sort of task allocation [Cornejo, Dornhaus, Lynch, Nagpal’14]
Population Splitting

Example explicit application from [Alistarh, Aspnes, Gelashvili’18]

- During first interactions, one node becomes a worker, another a clock

May need to use synthetic coins to break ties

Other examples:

- [Gasieniec, Stachowiak, Uznanski’18]: most complex explicit splitting
- [Berenbrink, Elsässer, Friedetzky, Kaaser, Kling, Radzik’18]: most delicate explicit splitting
Applications: Majority

Requires $\Omega(\log n)$ states to stabilize in polylog(n) time*
 • Both state-optimal protocols [AAG’18,BEFKKR’18] rely on population splitting
 • phases of $O(n \log n)$ interactions, w.h.p.
 • use rumor spreading (phase updates, exceptions, etc)
 • need backup protocols
 • [BEFKKR’18] fuses phases together, splitting gets complicated

*under some combinatorial assumptions that all known protocols satisfy
Applications: Leader Election

Synthetic coin invented for leader election, still used in best protocols [Gasieniec, Stachowiak'17, Gasieniec, Stachowiak, Uznanski'18]. Original ideas:

- use coin outcome to decide to increase seeding or not
- lottery: decide whether to drop out based on random seeding

Powerful combination with phase clocks, e.g. in each phase

- flip an almost fair coin
- rumor spread existence of 1 to eliminate all 0s from contention
Conclusions

Population Protocols are a fertile ground for algorithmic research
 • ...and lower bounds also based on nice combinatorial arguments

Interesting to explore directions
 • Other graphs
 • Other tasks
 • Convergence vs stabilization vs loose stabilization
 • Approximate Protocols
 • Remove assumption in the majority lower bound

While staying simultaneously aware of motivations and open-minded

The contents of this talk will appear as a survey in SIGACT News.