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What this talk will be about

Goals of this talk

• Introduce several key ideas about pseudorandomness using a
toy example.

Existence via Probabilistic Method, connections to error
correcting codes, hash functions.

• See (up to 3) examples how these ideas have been used in
distributed computing.

Low-congestion sampling, derandomization.

• See some extra pseudorandom objects on the way.

Expander graphs, pairwise independent hash functions.
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What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

R
random
bits

No:

if each string fails on some input, some minimum needed.

Yes:

an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29



What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

R
random-ish
bits

No:

if each string fails on some input, some minimum needed.

Yes:

an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29



What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

R
random-ish
bits

No: if each string fails on some input, some minimum needed.

Yes:

an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29



What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

R
random-ish
bits

No: if each string fails on some input, some minimum needed.

Yes: an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29



What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

ERsmall

random-ish
bits

bits
random

No: if each string fails on some input, some minimum needed.

Yes: an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29



What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

ERsmall

random-ish
bits

bits
random

No: if each string fails on some input, some minimum needed.

Yes: an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29



Example: Equality in 2-party Communication Complexity

A B

(most of the time)

f (x, y)

x y

Take f = EQn: EQn(x , y) =

{
1 if x = y

0 otherwise
with x , y ∈ {0, 1}n.

For error ε < 1/2, simple algorithm using dlog(1/ε)e bits?
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Algorithm for Equality with shared randomness

A B

(most of the time)

f (x, y)

x yR

1. Repeat for t in [dlog(1/ε)e]
1.1 Alice reads r (t) ∈ {0, 1}n from shared randomness.

1.2 Alice computes 〈x , r (t)〉 =
∑n

i=1 xi · r
(t)
i mod 2, sends it to

Bob.

2. Bob outputs “Equal” iff 〈x , r (t)〉 = 〈y , r (t)〉, ∀t ∈ [dlog(1/ε)e]

Proof: when x 6= y , each r (t) has a probability 1/2 to be s.t.
〈x , r (t)〉 6= 〈y , r (t)〉 (to see it, focus on any index i s.t. xi 6= yi ).
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Do we need that many random strings?

A B

(most of the time)

f (x, y)

x yR

Algorithm from previous slide: n · dlog(1/ε)e random bits.

If we no longer have shared randomness, sampling the randomness
on one side and sharing it is way too expensive.

Can we identify a subset of the randomness that works?
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First Important Idea: probabilistic method

Goal: find subset R ⊆ {0, 1}n such that:

• (small) |R| � 2n ,

• (useful) ∀x , y ∈ {0, 1}n, x 6= y , Pr
r∈R

[〈x , r〉 6= 〈y , r〉] ≥ 1/4 .

Result: there exists such a set R of size O(n)

Proof: Pick specific pair x , y with x 6= y . In k random strings
r1, . . . , rk , k/2 in expectation are s.t. 〈x , r〉 6= 〈y , r〉.

Probability that less than k/4 strings are s.t. 〈x , r〉 6= 〈y , r〉 is
bounded by: exp(−k/12) (Chernoff bound)

Probality that less than k/4 strings are s.t. 〈x , r〉 6= 〈y , r〉 for some
pair x , y : 22n · exp(−k/12) < 1 for k > (24 ln(2)) · n.
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compute R?
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Probabilistic method at its fullest: pseudorandom
generators

More generally: Consider any randomized algorithm with N
inputs, failure probability ε. We can identify a subset of its
randomness of size O(ε−1 logN) such that the error is at most 2ε
when using random strings from this sparse randomness.

Even more generally: There is a set of O(n) random strings such
that for all circuits with a description of size n each correctly
computing some function with error ε, they still all correctly
compute their function if using this randomness.

Pseudorandom generators: generators of such strings. An
explicit construction would give P = BPP, by enumerating through
all the strings.
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Second Important Idea: connection to other objects

Pick a set of random strings R ⊆ {0, 1}n like we just constructed,
i.e., for any x , y ∈ {0, 1}n such that x 6= y :

{r ∈ R : 〈x , r〉 6= 〈y , r〉} ≥ |R|/4 .

For each x ∈ {0, 1}n, consider the |R|-bit word wR(x):

wR(x) = 〈x , r1〉.〈x , r2〉. . . . .〈x , r|R|〉 .

Property:

for any pair x 6= y , wR(x) and wR(y) differ on at least
|R|/4 bits.
It’s an Error Correcting Code!
With parameters [24 ln(2)n, n, 6 ln(2)n], over F2.

Conversely: Can get more randomness-efficient algorithms from
results on Error Correcting Codes.
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Second Important Idea continued: another connected
object

We can also see each r ∈ R as a map hr : {0, 1}n → 0, 1, with
hr (x) = 〈x , r〉

Definition ((ε-almost) Pairwise-Independent Hash Functions)

A set H of functions h : [N]→ [M] s.t.:
∀x 6= y ∈ [N]2, z , z ′ ∈ [M]2,
|Prh∈H[h(x) = z ∧ h(y) = z ′]− 1/M2| ≤ ε/M2.

There exists a family of such hash functions of size
poly(M, 1/ε)(logN/ log logN).
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Lessons learned so far

Given ANY randomized algorithm, we can reduce its use of
randomness to O(log n) bits without affecting its success/failure
probability too much.

However this is existential. While existence of some pseudorandom
object can often be done by probabilistic method, finding an
explicit construction can be harder.

Going the last mile requires finding some explicit structure that
works in the given application (error correcting codes, families of
hash functions, fields, polynomials, classes of graphs).
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Distributed applications
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Distributed application 1: random sampling
Setting: Congest model:

• Graph G = (V ,E ) is the input and the communication network.

• n = number of nodes, ∆ = maximum degree. Known by all nodes.

• In a round, each node can send O(log n) bits on each incident edge.

• Complexity is the number of rounds to achieve the wanted result.

Local model: same with infinite bandwidth.

• k-coloring: each node must be properly colored with a value from
{1, . . . , k}.

• k-list-coloring: each node starts with a list of k colors, from which
it must choose its color.

• palette Ψv : colors still available to a node v as it avoids colors
already chosen by neighbors.

• edge-coloring: we have to color the edges instead of the nodse
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• Graph G = (V ,E ) is the input and the communication network.

• n = number of nodes, ∆ = maximum degree. Known by all nodes.

• In a round, each node can send O(log n) bits on each incident edge.

• Complexity is the number of rounds to achieve the wanted result.

Local model: same with infinite bandwidth.

Highlights from [HN23, HNT22], lowering the complexity in
Congest to that in Local (or almost):

• In O(log∗ n): (1 + ε)∆ coloring, (1 + ε)∆ edge-coloring, when

∆ ∈ Ω(log1+1/ log∗ n). [HN23]

• deg +1-list-coloring in O(log5 log n) [HNT22], (2∆− 1)-edge
coloring in O(log4 log n) rounds. [HN23]

(saving an additive log ∆ in both cases)
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Fast coloring with an excess of colors [SW10]

• Consider the nodes v s.t. |Ψv | ≥ 2x · dv .
(i.e., with ×2x more available colors than active neighbors)

• Let each such node try x colors.

• They each get colored w.p. 1− 2−x .
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Fast coloring with an excess of colors [SW10]

Algorithm for 2∆-coloring in Local, for a node v , with neighbors
of higher ID N+(v).

1. Set x ← 1.

2. For i = 1 to O(log∗ n)

2.1 Repeat O(1) times:

2.1.1 v picks a set Sv of x random colors in its palette Ψv .
2.1.2 v sends Sv to N(v), computes Tv = Sv \

⋃
u∈N+(v) Su.

2.1.3 If Tv 6= ∅, v permanently adopts a color in Tv .
It sends its final color to its neighbors and stops the algorithm.

2.2 Set x ← min(2x , log n).

3. If ∆ < O(log1+1/ log∗ n n), finish the coloring with a deterministic
algorithm. [GK21]

Proof idea: the degree of each node is bounded by
max( 2∆

x ,O(log n)), w.h.p., throughout the algorithm.
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2.1.3 If Tv 6= ∅, v permanently adopts a color in Tv .
It sends its final color to its neighbors and stops the algorithm.

2.2 Set x ← min(2x , log n).

3. If ∆ < O(log1+1/ log∗ n n), finish the coloring with a deterministic
algorithm. [GK21]

Proof idea: the degree of each node is bounded by
max( 2∆

x ,O(log n)), w.h.p., throughout the algorithm.
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Doing the same in Congest: the cost of sending a set
Basic argument of the algorithm is:
• given a space of colors C, and
• a subset T ⊆ C of colors to avoid of size |T | ≤ |C|/2,
• when taking a random set S ⊆ C of size x , the probability

that S ⊆ T is ≤ 2−x .

2∆

Tv =
⋃

u∈N(v)

Su

Issue for Congest: describing an arbitrary set S ⊆ [2∆],
|Sv | ∈ [1,Θ(log n)] requires Θ(log n · log ∆) bits.
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Solution 1 (existential), by probabilistic method

Same proof scheme as before:

• Fix T ⊆ [2∆], |T | ≤ ∆.

• For a random set S ⊆ [2∆] of size x , Pr[S ⊆ T ] ≤ 2−x .

• Taking k random sets S1 . . . Sk ⊆ [2∆], ≤ k · 2−x are expected to
be ⊆ T .

• The probability that ≥ 2 · k2−x of the sets are ⊆ T is ≤ e−k·2
−x/3.

• There are ≤ 22∆ possible sets T .

• With x ∈ O(log n), k ∈ poly(log ∆, n), k random sets are s.t.
T ⊆ [2∆], |T | ≤ ∆, |{i : Si ⊆ T}| ≤ 2k2−x with probability > 0.

Can strengthen it a bit: For any sufficiently large set T , most
sets S1 . . . Spoly(log ∆,n) intersect T in ≈ Si · |T |/(2∆) elements.
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Representative sets

Lemma (Representative sets)

Let U be a universe of size k . A family F = {S1, . . . ,St} of s-sized sets
is said to be an (α, δ, ν)-representative family iff:

∀T ⊆ U, |T | ≥ δk : Pr
i∈u [t]

[∣∣∣∣ |Si ∩ T |
|Si |

− |T |
k

∣∣∣∣ ≤ α |T |k
]
≥ (1− ν), (1)

∀T ⊆ U, |T | < δk : Pr
i∈u [t]

[
|Si ∩ T |
|Si |

− δ ≤ αδ

]
≥ (1− ν), (2)

∀u ∈ U : Pr
i∈u [t]

[u ∈ Si ] ∈ [1− α, 1 + α]
s · t
k
. (3)

Such families exist for t ∈ Θ(k/ν + k log k) and s ∈ Θ(α−2δ−1 log(1/ν)).

Proof: probabilistic method.
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Solution 2 (explicit), using expander graphs

We add a graph structure on the space of colors.

2∆

Tv =
⋃

u∈N(v)

Su

On a graph of degree O(1), describing a walk of length k takes
O(log ∆) (to describe the starting vertex) +O(k) bits (to describe
the k steps taken from this starting node).

But why should such sets have the right properties?
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Spectral expanders and random walks

0

1 6

52

3 4
1 1 0 0 0 0 1
1 1 1 0 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 1 1 0 1 0
0 0 0 1 1 1 1
1 0 0 0 0 1 0

Consider a connected, non-bipartite, regular digraph G , transition matrix
MG .

Consider eigenvalues of MG λ1, . . . , λn, s.t. |λi | ≥ |λi+1|

The largest eigenvalue is always λ1 = 1 and corresponds to the uniform

distribution, others are < 1.
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Expanders mix well

The spectral gap γ = 1− |λ2| captures how fast and close a
random walk gets to the uniform distribution.

Theorem ([Hea08, WX05])

Consider an expander graph G with spectral gap γ = 1− |λ2|, and
a subset S ⊆ V of its nodes. Consider a random walk of length k,
and let X measure how many steps of the walk are in S . For any
ε > 0:

Pr

[∣∣∣1
k
X − |S |

n

∣∣∣ ≥ ε] ≤ 2e−ε
2γk/4

Just need to find an expander over 2∆ nodes, with constant
degree, spectral gap Ω(1).
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Existence of expanders

Do expanders like we want exist?

Well yes! By probabilistic method!
...
But explicit constructions are also known.
Graphs defined by the structure of a prime fields, recursive
constructions...
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Consequences [HN23]

∆ Coloring tasks Complexity in
Congest

Ω(log1+1/ log∗ n n)
(1 + ε)∆-vertex

O(log∗ n)
(1 + ε)∆-edge

O(log1+1/ log∗ n n)
(1 + ε)∆-vertex O(log3 log n)

(2∆− 1)-edge O(log4 log n)

Ω(

√
log1+1/ log∗ n n)

(1 + ε)∆2-vertex distance-2
O(log∗ n)

O(

√
log1+1/ log∗ n n) O(log4 log n)

Ω(log1+1/c′ n)
∆ log(c)-vertex

O(1)∆ log(c)-edge

Ω(

√
log1+1/c′ n) ∆2 log(c) n-vertex distance-2

Techniques: Rödl nibble [DGP98] (for (1 + ε)∆-edge coloring),

shattering [BEPS16] and deterministic algorithm [GK21] (for smaller ∆).
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Harder case: non-shared color space [HNT22]

Suppose now that each node has a list of 2∆ colors in a much
bigger universe of colors C.

C

The expander construction no longer works here. How do we
extend the argument?
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Existential solution: pure hashing

Suppose nodes could sample and communicate a perfect hash function
C → [4∆]. To try colors, nodes could:

1. Consider the part of their palette that hash to a value ≤ Θ(log n).
(Θ(log n) do, in expectation)

2. Send a Θ(log n) bitmap to say ”I’m trying colors with these hashes”

Sketch of the why and how

Using hashing adds another source of failure (collision between colors),
but overall, when trying x colors, one of the tried color should work with
probability 1− exp(−Ω(x)).

As usual, probabilistic method to find a small set of hash functions with
the right properties.

Extends all previous results to the list-setting, but with very large local
computation.
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Doing without the existential arguments

1. Each node v finds an ε/2-almost-pairwise independent hash
function hv : C → [4∆/ε] with ≤ ε∆ collisions.

2. Each node samples colors/hashes using the expander graph
structure applied to the hash space [2∆/ε].

3. Neighbors of a node answer if they are trying a color with the
same hash through hv than colors tried by v .

General idea: each node has at least (2− ε)∆ colors which are
not in collision with its hash function.

Each color tried by a neighbor removes at most one possible hash
for v . As before, nodes sample more and more colors but always
guaranteeing that each node has a constant fraction of its palette
untried by neighbors in any given round.

Each node, when sampling hashes, should thus succeed in finding a
color with the usual probability.
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The point of it

Allowed us to get a poly log log n algorithm for deg +1-list-coloring,
and the list-coloring versions of all previously mentionned problems
(with extra colors).

Also, the algorithm for deg +1-list-coloring finishes in O(log∗ n) for
∆ > log7 n.

Also useful in subsequent work: see distance-2 paper at this
DISC [FHN23].
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Distributed application 2: derandomization

Pseudorandomness is also essential to derandomizing randomized
algorithms: less random bits to deterministically choose, the better!

• MPC [CDP21a, CDP21b, CC22, FGG22, CCDM23a]

• Congested Clique [CPS20, CDP21c, CCDM23b]
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Concluding

To go further if this has piqued your interest, “Pseudorandomness”
by Salil Vadhan is a great survey. [Vad12]

Some open questions:

• explicit representative hash functions?

The explicit solution presented before works for distance-1
node-coloring, not some other settings (edge-coloring,
distance-2 coloring).

• For the MPC results relying on pseudorandom generators, do
without them.

The PRGs fit in low-space MPC, but requires exponential
computation.

Thanks!
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Creating slack: sparsity

Intuition: if your neighbors are mostly
disconnected, it’s likely some of them
will pick the same color.

Formally: ζv = 1
∆

((
∆
2

)
− |E [N(v)]|

)
.

Theorem ([EPS15]): Let each node try
a random color, then afterwards:

Pr[sv ≤ c · ζv ] ≤ exp(−c ′ · ζv ).

for some universal constants c and c ′.

Nodes of the line-graph LG (e ∈ EG iff ve ∈ VLG ; veve′ ∈ ELG iff
e = uv , e ′ = uv ′) have sparsity Ω(∆). In an edge-coloring
setting, [EPS15]’s result gives Ω(∆) slack.
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Theorem ([EPS15]): Let each node try
a random color, then afterwards:

Pr[sv ≤ c · ζv ] ≤ exp(−c ′ · ζv ).
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Inherent sparsity of line-graphs
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Pairwise-Independent Hash Functions

Definition ((ε-almost) Pairwise-Independent Hash Functions)

A set H of functions h : [N]→ [M] s.t.:
∀x 6= y ∈ [N]2, z , z ′ ∈ [M]2,
|Prh∈H[h(x) = z ∧ h(y) = z ′]− 1/M2| ≤ ε/M2.

Let p be a prime such that p ≥ M3 · logp N/ε.

Decompose x into basis p, i.e., compute x1, . . . , xdlogp Ne such that

x =
∑

i xi · pi .

Consider the polynomial Px(X ) =
∑

i xi · X i , of degree ≤ logp N.

Pick a, b, z uniformly at random in {0, . . . , p − 1}.

Compute: ha,b,z = ((a · Px(z) + b) mod p) mod M.
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Finite fields of size pk , p prime

Example with p = 2.

Pick a degree k polynomial irreducible over F2. For p = 2,
P(X ) = X k + X + 1 always works: P(0) = P(1) = 1 mod 2.

Consider the F2[X ]/P(X ), i.e., polynomials over F2 mod P.

It is equivalent to defining that there’s an element a s.t.
ak = 1 + a, and considering the 2k possible words that can be
written as combinations of 1, a, . . . , ak−1.

Example of a multiplication over this field: let k = 3,
(1 + a2)× a = a + a3 = a + 1 + a = 1.
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