
Pseudorandomness: Some Distributed
Applications

Alexandre Nolin

CISPA Helmholtz Center for Information Security

ADGA 2023, 09.10.2023

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 1/29

What this talk will be about

Goals of this talk

• Introduce several key ideas about pseudorandomness using a
toy example.

Existence via Probabilistic Method, connections to error
correcting codes, hash functions.

• See (up to 3) examples how these ideas have been used in
distributed computing.

Low-congestion sampling, derandomization.

• See some extra pseudorandom objects on the way.

Expander graphs, pairwise independent hash functions.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 2/29

What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

R
random
bits

No:

if each string fails on some input, some minimum needed.

Yes:

an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29

What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

R
random-ish
bits

No:

if each string fails on some input, some minimum needed.

Yes:

an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29

What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

R
random-ish
bits

No: if each string fails on some input, some minimum needed.

Yes:

an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29

What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

R
random-ish
bits

No: if each string fails on some input, some minimum needed.

Yes: an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29

What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

ERsmall

random-ish
bits

bits
random

No: if each string fails on some input, some minimum needed.

Yes: an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29

What is pseudorandomness?
Given a randomized algorithm, can we swap its source of random
bits for a simpler one?

A f (x)x
(most of the time)

ERsmall

random-ish
bits

bits
random

No: if each string fails on some input, some minimum needed.

Yes: an algorithm shouldn’t be table to tell apart all distributions.

Furthermore: is the sparsification reasonably computable?

Pseudorandomness = study of when this is possible.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 3/29

Example: Equality in 2-party Communication Complexity

A B

(most of the time)

f (x, y)

x y

Take f = EQn: EQn(x , y) =

{
1 if x = y

0 otherwise
with x , y ∈ {0, 1}n.

For error ε < 1/2, simple algorithm using dlog(1/ε)e bits?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 4/29

Example: Equality in 2-party Communication Complexity

A B

(most of the time)

f (x, y)

x yR

Take f = EQn: EQn(x , y) =

{
1 if x = y

0 otherwise
with x , y ∈ {0, 1}n.

For error ε < 1/2, simple algorithm using dlog(1/ε)e bits?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 4/29

Example: Equality in 2-party Communication Complexity

A B

(most of the time)

f (x, y)

x yR

Take f = EQn: EQn(x , y) =

{
1 if x = y

0 otherwise
with x , y ∈ {0, 1}n.

For error ε < 1/2, simple algorithm using dlog(1/ε)e bits?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 4/29

Algorithm for Equality with shared randomness

A B

(most of the time)

f (x, y)

x yR

1. Repeat for t in [dlog(1/ε)e]
1.1 Alice reads r (t) ∈ {0, 1}n from shared randomness.

1.2 Alice computes 〈x , r (t)〉 =
∑n

i=1 xi · r
(t)
i mod 2, sends it to

Bob.

2. Bob outputs “Equal” iff 〈x , r (t)〉 = 〈y , r (t)〉, ∀t ∈ [dlog(1/ε)e]

Proof: when x 6= y , each r (t) has a probability 1/2 to be s.t.
〈x , r (t)〉 6= 〈y , r (t)〉 (to see it, focus on any index i s.t. xi 6= yi).

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 5/29

Algorithm for Equality with shared randomness

A B

(most of the time)

f (x, y)

x yR

1. Repeat for t in [dlog(1/ε)e]
1.1 Alice reads r (t) ∈ {0, 1}n from shared randomness.

1.2 Alice computes 〈x , r (t)〉 =
∑n

i=1 xi · r
(t)
i mod 2, sends it to

Bob.

2. Bob outputs “Equal” iff 〈x , r (t)〉 = 〈y , r (t)〉, ∀t ∈ [dlog(1/ε)e]

Proof: when x 6= y , each r (t) has a probability 1/2 to be s.t.
〈x , r (t)〉 6= 〈y , r (t)〉 (to see it, focus on any index i s.t. xi 6= yi).

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 5/29

Do we need that many random strings?

A B

(most of the time)

f (x, y)

x yR

Algorithm from previous slide: n · dlog(1/ε)e random bits.

If we no longer have shared randomness, sampling the randomness
on one side and sharing it is way too expensive.

Can we identify a subset of the randomness that works?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 6/29

Do we need that many random strings?

A B

(most of the time)

f (x, y)

x yRA RB

Algorithm from previous slide: n · dlog(1/ε)e random bits.

If we no longer have shared randomness, sampling the randomness
on one side and sharing it is way too expensive.

Can we identify a subset of the randomness that works?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 6/29

Do we need that many random strings?

A B

(most of the time)

f (x, y)

x yRA RB

Algorithm from previous slide: n · dlog(1/ε)e random bits.

If we no longer have shared randomness, sampling the randomness
on one side and sharing it is way too expensive.

Can we identify a subset of the randomness that works?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 6/29

Do we need that many random strings?

A B

(most of the time)

f (x, y)

x yRA RB

Algorithm from previous slide: n · dlog(1/ε)e random bits.

If we no longer have shared randomness, sampling the randomness
on one side and sharing it is way too expensive.

Can we identify a subset of the randomness that works?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 6/29

First Important Idea: probabilistic method

Goal: find subset R ⊆ {0, 1}n such that:

• (small) |R| � 2n ,

• (useful) ∀x , y ∈ {0, 1}n, x 6= y , Pr
r∈R

[〈x , r〉 6= 〈y , r〉] ≥ 1/4 .

Result: there exists such a set R of size O(n)

Proof: Pick specific pair x , y with x 6= y . In k random strings
r1, . . . , rk , k/2 in expectation are s.t. 〈x , r〉 6= 〈y , r〉.

Probability that less than k/4 strings are s.t. 〈x , r〉 6= 〈y , r〉 is
bounded by: exp(−k/12) (Chernoff bound)

Probality that less than k/4 strings are s.t. 〈x , r〉 6= 〈y , r〉 for some
pair x , y : 22n · exp(−k/12) < 1 for k > (24 ln(2)) · n.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 7/29

First Important Idea: probabilistic method

Goal: find subset R ⊆ {0, 1}n such that:

• (small) |R| � 2n ,

• (useful) ∀x , y ∈ {0, 1}n, x 6= y , Pr
r∈R

[〈x , r〉 6= 〈y , r〉] ≥ 1/4 .

Result: there exists such a set R of size O(n)

Proof: Pick specific pair x , y with x 6= y . In k random strings
r1, . . . , rk , k/2 in expectation are s.t. 〈x , r〉 6= 〈y , r〉.

Probability that less than k/4 strings are s.t. 〈x , r〉 6= 〈y , r〉 is
bounded by: exp(−k/12) (Chernoff bound)

Probality that less than k/4 strings are s.t. 〈x , r〉 6= 〈y , r〉 for some
pair x , y : 22n · exp(−k/12) < 1 for k > (24 ln(2)) · n.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 7/29

First Important Idea: probabilistic method

Goal: find subset R ⊆ {0, 1}n such that:

• (small) |R| � 2n ,

• (useful) ∀x , y ∈ {0, 1}n, x 6= y , Pr
r∈R

[〈x , r〉 6= 〈y , r〉] ≥ 1/4 .

Result: there exists such a set R of size O(n)

Consequence: Given only private randomness, EQn can still be
solved with ε error in O(log(1/ε) · log(n)) communication.

Limitation: Is the algorithm explicit? How expensive is it to
compute R?

exponential (in n)

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 7/29

First Important Idea: probabilistic method

Goal: find subset R ⊆ {0, 1}n such that:

• (small) |R| � 2n ,

• (useful) ∀x , y ∈ {0, 1}n, x 6= y , Pr
r∈R

[〈x , r〉 6= 〈y , r〉] ≥ 1/4 .

Result: there exists such a set R of size O(n)

Consequence: Given only private randomness, EQn can still be
solved with ε error in O(log(1/ε) · log(n)) communication.

Limitation: Is the algorithm explicit? How expensive is it to
compute R?

exponential (in n)

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 7/29

First Important Idea: probabilistic method

Goal: find subset R ⊆ {0, 1}n such that:

• (small) |R| � 2n ,

• (useful) ∀x , y ∈ {0, 1}n, x 6= y , Pr
r∈R

[〈x , r〉 6= 〈y , r〉] ≥ 1/4 .

Result: there exists such a set R of size O(n)

Consequence: Given only private randomness, EQn can still be
solved with ε error in O(log(1/ε) · log(n)) communication.

Limitation: Is the algorithm explicit? How expensive is it to
compute R? exponential (in n)

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 7/29

Probabilistic method at its fullest: pseudorandom
generators

More generally: Consider any randomized algorithm with N
inputs, failure probability ε. We can identify a subset of its
randomness of size O(ε−1 logN) such that the error is at most 2ε
when using random strings from this sparse randomness.

Even more generally: There is a set of O(n) random strings such
that for all circuits with a description of size n each correctly
computing some function with error ε, they still all correctly
compute their function if using this randomness.

Pseudorandom generators: generators of such strings. An
explicit construction would give P = BPP, by enumerating through
all the strings.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 8/29

Probabilistic method at its fullest: pseudorandom
generators

More generally: Consider any randomized algorithm with N
inputs, failure probability ε. We can identify a subset of its
randomness of size O(ε−1 logN) such that the error is at most 2ε
when using random strings from this sparse randomness.

Even more generally: There is a set of O(n) random strings such
that for all circuits with a description of size n each correctly
computing some function with error ε, they still all correctly
compute their function if using this randomness.

Pseudorandom generators: generators of such strings. An
explicit construction would give P = BPP, by enumerating through
all the strings.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 8/29

Probabilistic method at its fullest: pseudorandom
generators

More generally: Consider any randomized algorithm with N
inputs, failure probability ε. We can identify a subset of its
randomness of size O(ε−1 logN) such that the error is at most 2ε
when using random strings from this sparse randomness.

Even more generally: There is a set of O(n) random strings such
that for all circuits with a description of size n each correctly
computing some function with error ε, they still all correctly
compute their function if using this randomness.

Pseudorandom generators: generators of such strings. An
explicit construction would give P = BPP, by enumerating through
all the strings.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 8/29

Second Important Idea: connection to other objects

Pick a set of random strings R ⊆ {0, 1}n like we just constructed,
i.e., for any x , y ∈ {0, 1}n such that x 6= y :

{r ∈ R : 〈x , r〉 6= 〈y , r〉} ≥ |R|/4 .

For each x ∈ {0, 1}n, consider the |R|-bit word wR(x):

wR(x) = 〈x , r1〉.〈x , r2〉.〈x , r|R|〉 .

Property:

for any pair x 6= y , wR(x) and wR(y) differ on at least
|R|/4 bits.
It’s an Error Correcting Code!
With parameters [24 ln(2)n, n, 6 ln(2)n], over F2.

Conversely: Can get more randomness-efficient algorithms from
results on Error Correcting Codes.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 9/29

Second Important Idea: connection to other objects

Pick a set of random strings R ⊆ {0, 1}n like we just constructed,
i.e., for any x , y ∈ {0, 1}n such that x 6= y :

{r ∈ R : 〈x , r〉 6= 〈y , r〉} ≥ |R|/4 .

For each x ∈ {0, 1}n, consider the |R|-bit word wR(x):

wR(x) = 〈x , r1〉.〈x , r2〉.〈x , r|R|〉 .

Property: for any pair x 6= y , wR(x) and wR(y) differ on at least
|R|/4 bits.

It’s an Error Correcting Code!
With parameters [24 ln(2)n, n, 6 ln(2)n], over F2.

Conversely: Can get more randomness-efficient algorithms from
results on Error Correcting Codes.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 9/29

Second Important Idea: connection to other objects

Pick a set of random strings R ⊆ {0, 1}n like we just constructed,
i.e., for any x , y ∈ {0, 1}n such that x 6= y :

{r ∈ R : 〈x , r〉 6= 〈y , r〉} ≥ |R|/4 .

For each x ∈ {0, 1}n, consider the |R|-bit word wR(x):

wR(x) = 〈x , r1〉.〈x , r2〉.〈x , r|R|〉 .

Property: for any pair x 6= y , wR(x) and wR(y) differ on at least
|R|/4 bits.
It’s an Error Correcting Code!
With parameters [24 ln(2)n, n, 6 ln(2)n], over F2.

Conversely: Can get more randomness-efficient algorithms from
results on Error Correcting Codes.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 9/29

Second Important Idea: connection to other objects

Pick a set of random strings R ⊆ {0, 1}n like we just constructed,
i.e., for any x , y ∈ {0, 1}n such that x 6= y :

{r ∈ R : 〈x , r〉 6= 〈y , r〉} ≥ |R|/4 .

For each x ∈ {0, 1}n, consider the |R|-bit word wR(x):

wR(x) = 〈x , r1〉.〈x , r2〉.〈x , r|R|〉 .

Property: for any pair x 6= y , wR(x) and wR(y) differ on at least
|R|/4 bits.
It’s an Error Correcting Code!
With parameters [24 ln(2)n, n, 6 ln(2)n], over F2.

Conversely: Can get more randomness-efficient algorithms from
results on Error Correcting Codes.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 9/29

Second Important Idea continued: another connected
object

We can also see each r ∈ R as a map hr : {0, 1}n → 0, 1, with
hr (x) = 〈x , r〉

Definition ((ε-almost) Pairwise-Independent Hash Functions)

A set H of functions h : [N]→ [M] s.t.:
∀x 6= y ∈ [N]2, z , z ′ ∈ [M]2,
|Prh∈H[h(x) = z ∧ h(y) = z ′]− 1/M2| ≤ ε/M2.

There exists a family of such hash functions of size
poly(M, 1/ε)(logN/ log logN).

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 10/29

Lessons learned so far

Given ANY randomized algorithm, we can reduce its use of
randomness to O(log n) bits without affecting its success/failure
probability too much.

However this is existential. While existence of some pseudorandom
object can often be done by probabilistic method, finding an
explicit construction can be harder.

Going the last mile requires finding some explicit structure that
works in the given application (error correcting codes, families of
hash functions, fields, polynomials, classes of graphs).

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 11/29

Lessons learned so far

Given ANY randomized algorithm, we can reduce its use of
randomness to O(log n) bits without affecting its success/failure
probability too much.

However this is existential. While existence of some pseudorandom
object can often be done by probabilistic method, finding an
explicit construction can be harder.

Going the last mile requires finding some explicit structure that
works in the given application (error correcting codes, families of
hash functions, fields, polynomials, classes of graphs).

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 11/29

Lessons learned so far

Given ANY randomized algorithm, we can reduce its use of
randomness to O(log n) bits without affecting its success/failure
probability too much.

However this is existential. While existence of some pseudorandom
object can often be done by probabilistic method, finding an
explicit construction can be harder.

Going the last mile requires finding some explicit structure that
works in the given application (error correcting codes, families of
hash functions, fields, polynomials, classes of graphs).

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 11/29

Distributed applications

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 12/29

Distributed application 1: random sampling
Setting: Congest model:

• Graph G = (V ,E) is the input and the communication network.

• n = number of nodes, ∆ = maximum degree. Known by all nodes.

• In a round, each node can send O(log n) bits on each incident edge.

• Complexity is the number of rounds to achieve the wanted result.

Local model: same with infinite bandwidth.

• k-coloring: each node must be properly colored with a value from
{1, . . . , k}.

• k-list-coloring: each node starts with a list of k colors, from which
it must choose its color.

• palette Ψv : colors still available to a node v as it avoids colors
already chosen by neighbors.

• edge-coloring: we have to color the edges instead of the nodse

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 13/29

Distributed application 1: random sampling
Setting: Congest model:

• Graph G = (V ,E) is the input and the communication network.

• n = number of nodes, ∆ = maximum degree. Known by all nodes.

• In a round, each node can send O(log n) bits on each incident edge.

• Complexity is the number of rounds to achieve the wanted result.

Local model: same with infinite bandwidth.

• k-coloring: each node must be properly colored with a value from
{1, . . . , k}.

• k-list-coloring: each node starts with a list of k colors, from which
it must choose its color.

• palette Ψv : colors still available to a node v as it avoids colors
already chosen by neighbors.

• edge-coloring: we have to color the edges instead of the nodse

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 13/29

Distributed application 1: random sampling
Setting: Congest model:

• Graph G = (V ,E) is the input and the communication network.

• n = number of nodes, ∆ = maximum degree. Known by all nodes.

• In a round, each node can send O(log n) bits on each incident edge.

• Complexity is the number of rounds to achieve the wanted result.

Local model: same with infinite bandwidth.

Highlights from [HN23, HNT22], lowering the complexity in
Congest to that in Local (or almost):

• In O(log∗ n): (1 + ε)∆ coloring, (1 + ε)∆ edge-coloring, when

∆ ∈ Ω(log1+1/ log∗ n). [HN23]

• deg +1-list-coloring in O(log5 log n) [HNT22], (2∆− 1)-edge
coloring in O(log4 log n) rounds. [HN23]

(saving an additive log ∆ in both cases)

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 13/29

Fast coloring with an excess of colors [SW10]

• Consider the nodes v s.t. |Ψv | ≥ 2x · dv .
(i.e., with ×2x more available colors than active neighbors)

• Let each such node try x colors.

• They each get colored w.p. 1− 2−x .

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 14/29

Fast coloring with an excess of colors [SW10]

• Consider the nodes v s.t. |Ψv | ≥ 2x · dv .
(i.e., with ×2x more available colors than active neighbors)

• Let each such node try x colors.

• They each get colored w.p. 1− 2−x .

u4 u1 u2 u3

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 14/29

Fast coloring with an excess of colors [SW10]

• Consider the nodes v s.t. |Ψv | ≥ 2x · dv .
(i.e., with ×2x more available colors than active neighbors)

• Let each such node try x colors.

• They each get colored w.p. 1− 2−x .

u1 u4u3 u2

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 14/29

Fast coloring with an excess of colors [SW10]

• Consider the nodes v s.t. |Ψv | ≥ 2x · dv .
(i.e., with ×2x more available colors than active neighbors)

• Let each such node try x colors.

• They each get colored w.p. 1− 2−x .

u1u3u3 u1

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 14/29

Fast coloring with an excess of colors [SW10]

• Consider the nodes v s.t. |Ψv | ≥ 2x · dv .
(i.e., with ×2x more available colors than active neighbors)

• Let each such node try x colors.

• They each get colored w.p. 1− 2−x .

u3u3u3 u3

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 14/29

Fast coloring with an excess of colors [SW10]

Algorithm for 2∆-coloring in Local, for a node v , with neighbors
of higher ID N+(v).

1. Set x ← 1.

2. For i = 1 to O(log∗ n)

2.1 Repeat O(1) times:

2.1.1 v picks a set Sv of x random colors in its palette Ψv .
2.1.2 v sends Sv to N(v), computes Tv = Sv \

⋃
u∈N+(v) Su.

2.1.3 If Tv 6= ∅, v permanently adopts a color in Tv .
It sends its final color to its neighbors and stops the algorithm.

2.2 Set x ← min(2x , log n).

3. If ∆ < O(log1+1/ log∗ n n), finish the coloring with a deterministic
algorithm. [GK21]

Proof idea: the degree of each node is bounded by
max(2∆

x ,O(log n)), w.h.p., throughout the algorithm.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 15/29

Fast coloring with an excess of colors [SW10]

Algorithm for 2∆-coloring in Local, for a node v , with neighbors
of higher ID N+(v).

1. Set x ← 1.

2. For i = 1 to O(log∗ n)

2.1 Repeat O(1) times:

2.1.1 v picks a set Sv of x random colors in its palette Ψv .
2.1.2 v sends Sv to N(v), computes Tv = Sv \

⋃
u∈N+(v) Su.

2.1.3 If Tv 6= ∅, v permanently adopts a color in Tv .
It sends its final color to its neighbors and stops the algorithm.

2.2 Set x ← min(2x , log n).

3. If ∆ < O(log1+1/ log∗ n n), finish the coloring with a deterministic
algorithm. [GK21]

Proof idea: the degree of each node is bounded by
max(2∆

x ,O(log n)), w.h.p., throughout the algorithm.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 15/29

Doing the same in Congest: the cost of sending a set
Basic argument of the algorithm is:
• given a space of colors C, and
• a subset T ⊆ C of colors to avoid of size |T | ≤ |C|/2,
• when taking a random set S ⊆ C of size x , the probability

that S ⊆ T is ≤ 2−x .

2∆

Tv =
⋃

u∈N(v)

Su

Issue for Congest: describing an arbitrary set S ⊆ [2∆],
|Sv | ∈ [1,Θ(log n)] requires Θ(log n · log ∆) bits.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 16/29

Doing the same in Congest: the cost of sending a set
Basic argument of the algorithm is:
• given a space of colors C, and
• a subset T ⊆ C of colors to avoid of size |T | ≤ |C|/2,
• when taking a random set S ⊆ C of size x , the probability

that S ⊆ T is ≤ 2−x .

2∆

Tv =
⋃

u∈N(v)

Su

Sv

Issue for Congest: describing an arbitrary set S ⊆ [2∆],
|Sv | ∈ [1,Θ(log n)] requires Θ(log n · log ∆) bits.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 16/29

Doing the same in Congest: the cost of sending a set
Basic argument of the algorithm is:
• given a space of colors C, and
• a subset T ⊆ C of colors to avoid of size |T | ≤ |C|/2,
• when taking a random set S ⊆ C of size x , the probability

that S ⊆ T is ≤ 2−x .

2∆

Tv =
⋃

u∈N(v)

Su

Sv

Issue for Congest: describing an arbitrary set S ⊆ [2∆],
|Sv | ∈ [1,Θ(log n)] requires Θ(log n · log ∆) bits.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 16/29

Solution 1 (existential), by probabilistic method

Same proof scheme as before:

• Fix T ⊆ [2∆], |T | ≤ ∆.

• For a random set S ⊆ [2∆] of size x , Pr[S ⊆ T] ≤ 2−x .

• Taking k random sets S1 . . . Sk ⊆ [2∆], ≤ k · 2−x are expected to
be ⊆ T .

• The probability that ≥ 2 · k2−x of the sets are ⊆ T is ≤ e−k·2
−x/3.

• There are ≤ 22∆ possible sets T .

• With x ∈ O(log n), k ∈ poly(log ∆, n), k random sets are s.t.
T ⊆ [2∆], |T | ≤ ∆, |{i : Si ⊆ T}| ≤ 2k2−x with probability > 0.

Can strengthen it a bit: For any sufficiently large set T , most
sets S1 . . . Spoly(log ∆,n) intersect T in ≈ Si · |T |/(2∆) elements.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 17/29

Solution 1 (existential), by probabilistic method

Same proof scheme as before:

• Fix T ⊆ [2∆], |T | ≤ ∆.

• For a random set S ⊆ [2∆] of size x , Pr[S ⊆ T] ≤ 2−x .

• Taking k random sets S1 . . . Sk ⊆ [2∆], ≤ k · 2−x are expected to
be ⊆ T .

• The probability that ≥ 2 · k2−x of the sets are ⊆ T is ≤ e−k·2
−x/3.

• There are ≤ 22∆ possible sets T .

• With x ∈ O(log n), k ∈ poly(log ∆, n), k random sets are s.t.
T ⊆ [2∆], |T | ≤ ∆, |{i : Si ⊆ T}| ≤ 2k2−x with probability > 0.

Can strengthen it a bit: For any sufficiently large set T , most
sets S1 . . . Spoly(log ∆,n) intersect T in ≈ Si · |T |/(2∆) elements.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 17/29

Representative sets

Lemma (Representative sets)

Let U be a universe of size k . A family F = {S1, . . . ,St} of s-sized sets
is said to be an (α, δ, ν)-representative family iff:

∀T ⊆ U, |T | ≥ δk : Pr
i∈u [t]

[∣∣∣∣ |Si ∩ T |
|Si |

− |T |
k

∣∣∣∣ ≤ α |T |k
]
≥ (1− ν), (1)

∀T ⊆ U, |T | < δk : Pr
i∈u [t]

[
|Si ∩ T |
|Si |

− δ ≤ αδ

]
≥ (1− ν), (2)

∀u ∈ U : Pr
i∈u [t]

[u ∈ Si] ∈ [1− α, 1 + α]
s · t
k
. (3)

Such families exist for t ∈ Θ(k/ν + k log k) and s ∈ Θ(α−2δ−1 log(1/ν)).

Proof: probabilistic method.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 18/29

Solution 2 (explicit), using expander graphs

We add a graph structure on the space of colors.

2∆

Tv =
⋃

u∈N(v)

Su

On a graph of degree O(1), describing a walk of length k takes
O(log ∆) (to describe the starting vertex) +O(k) bits (to describe
the k steps taken from this starting node).

But why should such sets have the right properties?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 19/29

Solution 2 (explicit), using expander graphs

We add a graph structure on the space of colors.

2∆

Tv =
⋃

u∈N(v)

Su

On a graph of degree O(1), describing a walk of length k takes
O(log ∆) (to describe the starting vertex) +O(k) bits (to describe
the k steps taken from this starting node).

But why should such sets have the right properties?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 19/29

Solution 2 (explicit), using expander graphs

We add a graph structure on the space of colors.

2∆

Tv =
⋃

u∈N(v)

Su

On a graph of degree O(1), describing a walk of length k takes
O(log ∆) (to describe the starting vertex) +O(k) bits (to describe
the k steps taken from this starting node).

But why should such sets have the right properties?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 19/29

Solution 2 (explicit), using expander graphs

We add a graph structure on the space of colors.

2∆

Tv =
⋃

u∈N(v)

Su

Sv

On a graph of degree O(1), describing a walk of length k takes
O(log ∆) (to describe the starting vertex) +O(k) bits (to describe
the k steps taken from this starting node).

But why should such sets have the right properties?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 19/29

Spectral expanders and random walks

0

1 6

52

3 4
1 1 0 0 0 0 1
1 1 1 0 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 1 1 0 1 0
0 0 0 1 1 1 1
1 0 0 0 0 1 0

Consider a connected, non-bipartite, regular digraph G , transition matrix
MG .

Consider eigenvalues of MG λ1, . . . , λn, s.t. |λi | ≥ |λi+1|

The largest eigenvalue is always λ1 = 1 and corresponds to the uniform

distribution, others are < 1.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 20/29

Spectral expanders and random walks

0

1 6

52

3 4
1/3 1/3 0 0 0 0 1/3

1/3 1/3 1/3 0 0 0 0
0 1/3 0 1/3 1/3 0 0
0 0 1/3 0 1/3 1/3 0
0 0 1/3 1/3 0 1/3 0
0 0 0 1/3 1/3 1/3 1/3

1/3 0 0 0 0 1/3 0

Consider a connected, non-bipartite, regular digraph G , transition matrix
MG .

Consider eigenvalues of MG λ1, . . . , λn, s.t. |λi | ≥ |λi+1|

The largest eigenvalue is always λ1 = 1 and corresponds to the uniform

distribution, others are < 1.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 20/29

Expanders mix well

The spectral gap γ = 1− |λ2| captures how fast and close a
random walk gets to the uniform distribution.

Theorem ([Hea08, WX05])

Consider an expander graph G with spectral gap γ = 1− |λ2|, and
a subset S ⊆ V of its nodes. Consider a random walk of length k,
and let X measure how many steps of the walk are in S . For any
ε > 0:

Pr

[∣∣∣1
k
X − |S |

n

∣∣∣ ≥ ε] ≤ 2e−ε
2γk/4

Just need to find an expander over 2∆ nodes, with constant
degree, spectral gap Ω(1).

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 21/29

Expanders mix well

The spectral gap γ = 1− |λ2| captures how fast and close a
random walk gets to the uniform distribution.

Theorem ([Hea08, WX05])

Consider an expander graph G with spectral gap γ = 1− |λ2|, and
a subset S ⊆ V of its nodes. Consider a random walk of length k,
and let X measure how many steps of the walk are in S . For any
ε > 0:

Pr

[∣∣∣1
k
X − |S |

n

∣∣∣ ≥ ε] ≤ 2e−ε
2γk/4

Just need to find an expander over 2∆ nodes, with constant
degree, spectral gap Ω(1).

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 21/29

Existence of expanders

Do expanders like we want exist?

Well yes! By probabilistic method!
...
But explicit constructions are also known.
Graphs defined by the structure of a prime fields, recursive
constructions...

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 22/29

Existence of expanders

Do expanders like we want exist?

Well yes!

By probabilistic method!
...
But explicit constructions are also known.
Graphs defined by the structure of a prime fields, recursive
constructions...

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 22/29

Existence of expanders

Do expanders like we want exist?

Well yes! By probabilistic method!
...

But explicit constructions are also known.
Graphs defined by the structure of a prime fields, recursive
constructions...

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 22/29

Existence of expanders

Do expanders like we want exist?

Well yes! By probabilistic method!
...
But explicit constructions are also known.
Graphs defined by the structure of a prime fields, recursive
constructions...

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 22/29

Consequences [HN23]

∆ Coloring tasks Complexity in
Congest

Ω(log1+1/ log∗ n n)
(1 + ε)∆-vertex

O(log∗ n)
(1 + ε)∆-edge

O(log1+1/ log∗ n n)
(1 + ε)∆-vertex O(log3 log n)

(2∆− 1)-edge O(log4 log n)

Ω(

√
log1+1/ log∗ n n)

(1 + ε)∆2-vertex distance-2
O(log∗ n)

O(

√
log1+1/ log∗ n n) O(log4 log n)

Ω(log1+1/c′ n)
∆ log(c)-vertex

O(1)∆ log(c)-edge

Ω(

√
log1+1/c′ n) ∆2 log(c) n-vertex distance-2

Techniques: Rödl nibble [DGP98] (for (1 + ε)∆-edge coloring),

shattering [BEPS16] and deterministic algorithm [GK21] (for smaller ∆).

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 23/29

Harder case: non-shared color space [HNT22]

Suppose now that each node has a list of 2∆ colors in a much
bigger universe of colors C.

C

The expander construction no longer works here. How do we
extend the argument?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 24/29

Harder case: non-shared color space [HNT22]

Suppose now that each node has a list of 2∆ colors in a much
bigger universe of colors C.

C

The expander construction no longer works here. How do we
extend the argument?

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 24/29

Existential solution: pure hashing

Suppose nodes could sample and communicate a perfect hash function
C → [4∆]. To try colors, nodes could:

1. Consider the part of their palette that hash to a value ≤ Θ(log n).
(Θ(log n) do, in expectation)

2. Send a Θ(log n) bitmap to say ”I’m trying colors with these hashes”

Sketch of the why and how

Using hashing adds another source of failure (collision between colors),
but overall, when trying x colors, one of the tried color should work with
probability 1− exp(−Ω(x)).

As usual, probabilistic method to find a small set of hash functions with
the right properties.

Extends all previous results to the list-setting, but with very large local
computation.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 25/29

Existential solution: pure hashing

Suppose nodes could sample and communicate a perfect hash function
C → [4∆]. To try colors, nodes could:

1. Consider the part of their palette that hash to a value ≤ Θ(log n).
(Θ(log n) do, in expectation)

2. Send a Θ(log n) bitmap to say ”I’m trying colors with these hashes”

Sketch of the why and how

Using hashing adds another source of failure (collision between colors),
but overall, when trying x colors, one of the tried color should work with
probability 1− exp(−Ω(x)).

As usual, probabilistic method to find a small set of hash functions with
the right properties.

Extends all previous results to the list-setting, but with very large local
computation.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 25/29

Existential solution: pure hashing

Suppose nodes could sample and communicate a perfect hash function
C → [4∆]. To try colors, nodes could:

1. Consider the part of their palette that hash to a value ≤ Θ(log n).
(Θ(log n) do, in expectation)

2. Send a Θ(log n) bitmap to say ”I’m trying colors with these hashes”

Sketch of the why and how

Using hashing adds another source of failure (collision between colors),
but overall, when trying x colors, one of the tried color should work with
probability 1− exp(−Ω(x)).

As usual, probabilistic method to find a small set of hash functions with
the right properties.

Extends all previous results to the list-setting, but with very large local
computation.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 25/29

Existential solution: pure hashing

Suppose nodes could sample and communicate a perfect hash function
C → [4∆]. To try colors, nodes could:

1. Consider the part of their palette that hash to a value ≤ Θ(log n).
(Θ(log n) do, in expectation)

2. Send a Θ(log n) bitmap to say ”I’m trying colors with these hashes”

Sketch of the why and how

Using hashing adds another source of failure (collision between colors),
but overall, when trying x colors, one of the tried color should work with
probability 1− exp(−Ω(x)).

As usual, probabilistic method to find a small set of hash functions with
the right properties.

Extends all previous results to the list-setting, but with very large local
computation.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 25/29

Doing without the existential arguments

1. Each node v finds an ε/2-almost-pairwise independent hash
function hv : C → [4∆/ε] with ≤ ε∆ collisions.

2. Each node samples colors/hashes using the expander graph
structure applied to the hash space [2∆/ε].

3. Neighbors of a node answer if they are trying a color with the
same hash through hv than colors tried by v .

General idea: each node has at least (2− ε)∆ colors which are
not in collision with its hash function.

Each color tried by a neighbor removes at most one possible hash
for v . As before, nodes sample more and more colors but always
guaranteeing that each node has a constant fraction of its palette
untried by neighbors in any given round.

Each node, when sampling hashes, should thus succeed in finding a
color with the usual probability.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 26/29

Doing without the existential arguments

1. Each node v finds an ε/2-almost-pairwise independent hash
function hv : C → [4∆/ε] with ≤ ε∆ collisions.

2. Each node samples colors/hashes using the expander graph
structure applied to the hash space [2∆/ε].

3. Neighbors of a node answer if they are trying a color with the
same hash through hv than colors tried by v .

General idea: each node has at least (2− ε)∆ colors which are
not in collision with its hash function.

Each color tried by a neighbor removes at most one possible hash
for v . As before, nodes sample more and more colors but always
guaranteeing that each node has a constant fraction of its palette
untried by neighbors in any given round.

Each node, when sampling hashes, should thus succeed in finding a
color with the usual probability.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 26/29

The point of it

Allowed us to get a poly log log n algorithm for deg +1-list-coloring,
and the list-coloring versions of all previously mentionned problems
(with extra colors).

Also, the algorithm for deg +1-list-coloring finishes in O(log∗ n) for
∆ > log7 n.

Also useful in subsequent work: see distance-2 paper at this
DISC [FHN23].

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 27/29

Distributed application 2: derandomization

Pseudorandomness is also essential to derandomizing randomized
algorithms: less random bits to deterministically choose, the better!

• MPC [CDP21a, CDP21b, CC22, FGG22, CCDM23a]

• Congested Clique [CPS20, CDP21c, CCDM23b]

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 28/29

Concluding

To go further if this has piqued your interest, “Pseudorandomness”
by Salil Vadhan is a great survey. [Vad12]

Some open questions:

• explicit representative hash functions?

The explicit solution presented before works for distance-1
node-coloring, not some other settings (edge-coloring,
distance-2 coloring).

• For the MPC results relying on pseudorandom generators, do
without them.

The PRGs fit in low-space MPC, but requires exponential
computation.

Thanks!

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 29/29

Concluding

To go further if this has piqued your interest, “Pseudorandomness”
by Salil Vadhan is a great survey. [Vad12]

Some open questions:

• explicit representative hash functions?

The explicit solution presented before works for distance-1
node-coloring, not some other settings (edge-coloring,
distance-2 coloring).

• For the MPC results relying on pseudorandom generators, do
without them.

The PRGs fit in low-space MPC, but requires exponential
computation.

Thanks!

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 29/29

Concluding

To go further if this has piqued your interest, “Pseudorandomness”
by Salil Vadhan is a great survey. [Vad12]

Some open questions:

• explicit representative hash functions?

The explicit solution presented before works for distance-1
node-coloring, not some other settings (edge-coloring,
distance-2 coloring).

• For the MPC results relying on pseudorandom generators, do
without them.

The PRGs fit in low-space MPC, but requires exponential
computation.

Thanks!

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 29/29

Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes
Schneider.
The locality of distributed symmetry breaking.
Journal of the ACM, 63(3):20:1–20:45, 2016.

Sam Coy and Artur Czumaj.
Deterministic massively parallel connectivity.
In Stefano Leonardi and Anupam Gupta, editors, STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of
Computing, Rome, Italy, June 20 - 24, 2022, pages 162–175.
ACM, 2022.

Sam Coy, Artur Czumaj, Peter Davies, and Gopinath Mishra.
Fast parallel degree+1 list coloring.
CoRR, abs/2302.04378, 2023.

Sam Coy, Artur Czumaj, Peter Davies, and Gopinath Mishra.
Optimal (degree+1)-coloring in congested clique.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 29/29

In 50th International Colloquium on Automata, Languages,
and Programming, ICALP 2023, July 10-14, 2023, Paderborn,
Germany, volume 261 of LIPIcs, pages 46:1–46:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

Artur Czumaj, Peter Davies, and Merav Parter.
Graph sparsification for derandomizing massively parallel
computation with low space.
ACM Trans. Algorithms, 17(2):16:1–16:27, 2021.

Artur Czumaj, Peter Davies, and Merav Parter.
Improved deterministic (∆+1) coloring in low-space MPC.
In PODC ’21: ACM Symposium on Principles of Distributed
Computing, Virtual Event, Italy, July 26-30, 2021, pages
469–479. ACM, 2021.

Artur Czumaj, Peter Davies, and Merav Parter.
Simple, deterministic, constant-round coloring in congested
clique and MPC.
SIAM J. Comput., 50(5):1603–1626, 2021.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 29/29

Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman.
Derandomizing local distributed algorithms under bandwidth
restrictions.
Distributed Comput., 33(3-4):349–366, 2020.

Devdatt Dubhashi, David A Grable, and Alessandro Panconesi.

Near-optimal, distributed edge colouring via the nibble
method.
Theoretical Computer Science, 203(2):225–252, 1998.

Michael Elkin, Seth Pettie, and Hsin-Hao Su.
(2∆− 1)-edge-coloring is much easier than maximal matching
in the distributed setting.
In Proc. of 26th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 355–370, 2015.

Manuela Fischer, Jeff Giliberti, and Christoph Grunau.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 29/29

Improved deterministic connectivity in massively parallel
computation.
In 36th International Symposium on Distributed Computing,
DISC 2022, October 25-27, 2022, Augusta, Georgia, USA,
volume 246 of LIPIcs, pages 22:1–22:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin.
Fast coloring despite congested relays.
In 37th International Symposium on Distributed Computing,
DISC 2023, October 10-12, 2023, L’Aquila, Italy, volume 281
of LIPIcs, pages 19:1–19:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

Mohsen Ghaffari and Fabian Kuhn.
Deterministic distributed vertex coloring: Simpler, faster, and
without network decomposition.
In Proceedings of the Symposium on Foundations of Computer
Science (FOCS), pages 1009–1020. IEEE, 2021.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 29/29

Alexander Healy.
Randomness-efficient sampling within NC1.
Computational Complexity, 17:3–37, 2008.

Magnús M. Halldórsson and Alexandre Nolin.
Superfast coloring in congest via efficient color sampling.
Theoretical Computer Science, 948:113711, 2023.

Magnús M. Halldórsson, Alexandre Nolin, and Tigran
Tonoyan.
Overcoming congestion in distributed coloring.
In Alessia Milani and Philipp Woelfel, editors, PODC ’22:
ACM Symposium on Principles of Distributed Computing,
Salerno, Italy, July 25 - 29, 2022, pages 26–36. ACM, 2022.

Johannes Schneider and Roger Wattenhofer.
A new technique for distributed symmetry breaking.
In Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), pages 257–266. ACM, 2010.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 29/29

Salil P. Vadhan.
Pseudorandomness.
Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012.

Avi Wigderson and David Xiao.
A randomness-efficient sampler for matrix-valued functions
and applications.
In 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA,
USA, Proceedings, pages 397–406. IEEE Computer Society,
2005.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 30/29

Creating slack: sparsity

Intuition: if your neighbors are mostly
disconnected, it’s likely some of them
will pick the same color.

Formally: ζv = 1
∆

((
∆
2

)
− |E [N(v)]|

)
.

Theorem ([EPS15]): Let each node try
a random color, then afterwards:

Pr[sv ≤ c · ζv] ≤ exp(−c ′ · ζv).

for some universal constants c and c ′.

Nodes of the line-graph LG (e ∈ EG iff ve ∈ VLG ; veve′ ∈ ELG iff
e = uv , e ′ = uv ′) have sparsity Ω(∆). In an edge-coloring
setting, [EPS15]’s result gives Ω(∆) slack.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 30/29

Creating slack: sparsity

5

3

6

2

1

Intuition: if your neighbors are mostly
disconnected, it’s likely some of them
will pick the same color.

Formally: ζv = 1
∆

((
∆
2

)
− |E [N(v)]|

)
.

Theorem ([EPS15]): Let each node try
a random color, then afterwards:

Pr[sv ≤ c · ζv] ≤ exp(−c ′ · ζv).

for some universal constants c and c ′.

Nodes of the line-graph LG (e ∈ EG iff ve ∈ VLG ; veve′ ∈ ELG iff
e = uv , e ′ = uv ′) have sparsity Ω(∆). In an edge-coloring
setting, [EPS15]’s result gives Ω(∆) slack.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 30/29

Creating slack: sparsity

5

3

6

4

2

1

Intuition: if your neighbors are mostly
disconnected, it’s likely some of them
will pick the same color.

Formally: ζv = 1
∆

((
∆
2

)
− |E [N(v)]|

)
.

Theorem ([EPS15]): Let each node try
a random color, then afterwards:

Pr[sv ≤ c · ζv] ≤ exp(−c ′ · ζv).

for some universal constants c and c ′.

Nodes of the line-graph LG (e ∈ EG iff ve ∈ VLG ; veve′ ∈ ELG iff
e = uv , e ′ = uv ′) have sparsity Ω(∆). In an edge-coloring
setting, [EPS15]’s result gives Ω(∆) slack.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 30/29

Creating slack: sparsity

Intuition: if your neighbors are mostly
disconnected, it’s likely some of them
will pick the same color.

Formally: ζv = 1
∆

((
∆
2

)
− |E [N(v)]|

)
.

Theorem ([EPS15]): Let each node try
a random color, then afterwards:

Pr[sv ≤ c · ζv] ≤ exp(−c ′ · ζv).

for some universal constants c and c ′.

Nodes of the line-graph LG (e ∈ EG iff ve ∈ VLG ; veve′ ∈ ELG iff
e = uv , e ′ = uv ′) have sparsity Ω(∆). In an edge-coloring
setting, [EPS15]’s result gives Ω(∆) slack.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 30/29

Creating slack: sparsity

5

5

5

5

5

Intuition: if your neighbors are mostly
disconnected, it’s likely some of them
will pick the same color.

Formally: ζv = 1
∆

((
∆
2

)
− |E [N(v)]|

)
.

Theorem ([EPS15]): Let each node try
a random color, then afterwards:

Pr[sv ≤ c · ζv] ≤ exp(−c ′ · ζv).

for some universal constants c and c ′.

Nodes of the line-graph LG (e ∈ EG iff ve ∈ VLG ; veve′ ∈ ELG iff
e = uv , e ′ = uv ′) have sparsity Ω(∆). In an edge-coloring
setting, [EPS15]’s result gives Ω(∆) slack.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 30/29

Creating slack: sparsity

3

3

1

4

4

Intuition: if your neighbors are mostly
disconnected, it’s likely some of them
will pick the same color.

Formally: ζv = 1
∆

((
∆
2

)
− |E [N(v)]|

)
.

Theorem ([EPS15]): Let each node try
a random color, then afterwards:

Pr[sv ≤ c · ζv] ≤ exp(−c ′ · ζv).

for some universal constants c and c ′.

Nodes of the line-graph LG (e ∈ EG iff ve ∈ VLG ; veve′ ∈ ELG iff
e = uv , e ′ = uv ′) have sparsity Ω(∆). In an edge-coloring
setting, [EPS15]’s result gives Ω(∆) slack.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 30/29

Creating slack: sparsity

3

3

1

4

4

Intuition: if your neighbors are mostly
disconnected, it’s likely some of them
will pick the same color.

Formally: ζv = 1
∆

((
∆
2

)
− |E [N(v)]|

)
.

Theorem ([EPS15]): Let each node try
a random color, then afterwards:

Pr[sv ≤ c · ζv] ≤ exp(−c ′ · ζv).

for some universal constants c and c ′.

Nodes of the line-graph LG (e ∈ EG iff ve ∈ VLG ; veve′ ∈ ELG iff
e = uv , e ′ = uv ′) have sparsity Ω(∆). In an edge-coloring
setting, [EPS15]’s result gives Ω(∆) slack.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 30/29

Inherent sparsity of line-graphs

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 31/29

Pairwise-Independent Hash Functions

Definition ((ε-almost) Pairwise-Independent Hash Functions)

A set H of functions h : [N]→ [M] s.t.:
∀x 6= y ∈ [N]2, z , z ′ ∈ [M]2,
|Prh∈H[h(x) = z ∧ h(y) = z ′]− 1/M2| ≤ ε/M2.

Let p be a prime such that p ≥ M3 · logp N/ε.

Decompose x into basis p, i.e., compute x1, . . . , xdlogp Ne such that

x =
∑

i xi · pi .

Consider the polynomial Px(X) =
∑

i xi · X i , of degree ≤ logp N.

Pick a, b, z uniformly at random in {0, . . . , p − 1}.

Compute: ha,b,z = ((a · Px(z) + b) mod p) mod M.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 32/29

Finite fields of size pk , p prime

Example with p = 2.

Pick a degree k polynomial irreducible over F2. For p = 2,
P(X) = X k + X + 1 always works: P(0) = P(1) = 1 mod 2.

Consider the F2[X]/P(X), i.e., polynomials over F2 mod P.

It is equivalent to defining that there’s an element a s.t.
ak = 1 + a, and considering the 2k possible words that can be
written as combinations of 1, a, . . . , ak−1.

Example of a multiplication over this field: let k = 3,
(1 + a2)× a = a + a3 = a + 1 + a = 1.

Pseudorandomness: Some Distributed Applications – Alexandre Nolin – Talk at ADGA 2023 – 09.10.2023 33/29

	Appendix

