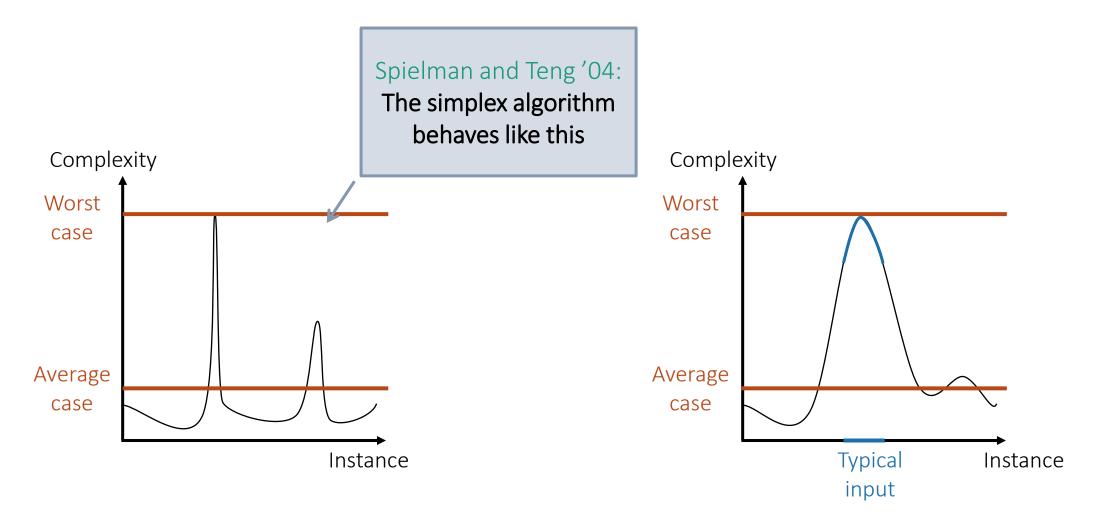


Smoothed Analysis of Dynamic Networks

Ami Paz – CNRS

Seth Gilbert – National University of Singapore
 Uri Meir – Tel-Aviv University
 Gregory Schwartzman – Japan Advanced Institute of Science and Technology

Smoothed Analysis



Smoothed Analysis

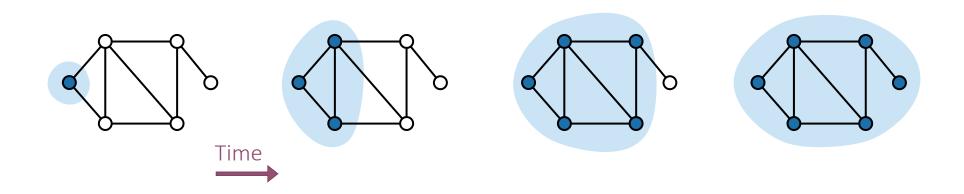
[Spielman and Teng '04]

A smoothed linear program:
 A linear program + Gaussian noise

Main result The simplex algorithm on a smoothed linear program takes polynomial time

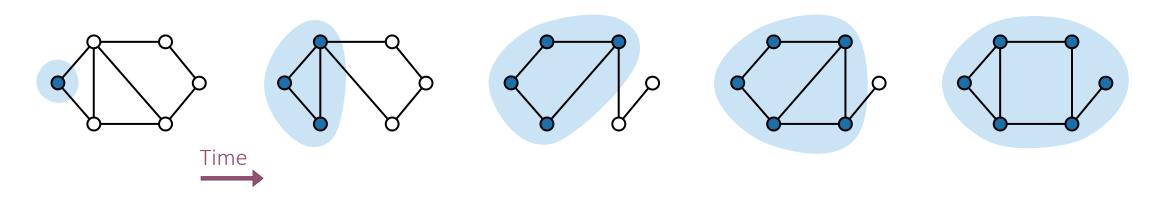
Flooding

- Connected *n*-node graph (*n*-unite synchronous network)
- Propagate information to all the network
- Worst-case: $\Theta(D)$ = diameter time

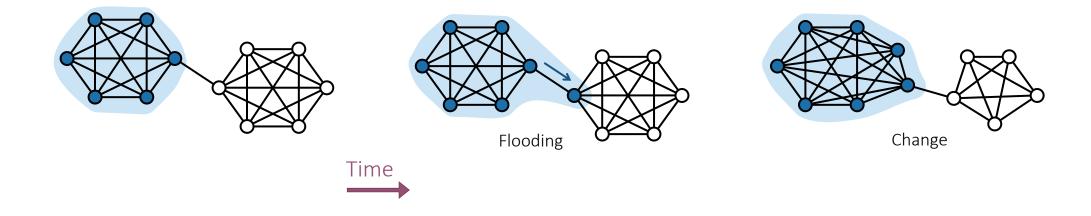


Dynamic Network

- Links change over time
- Worst case: n-1 time
 - even with D = 3



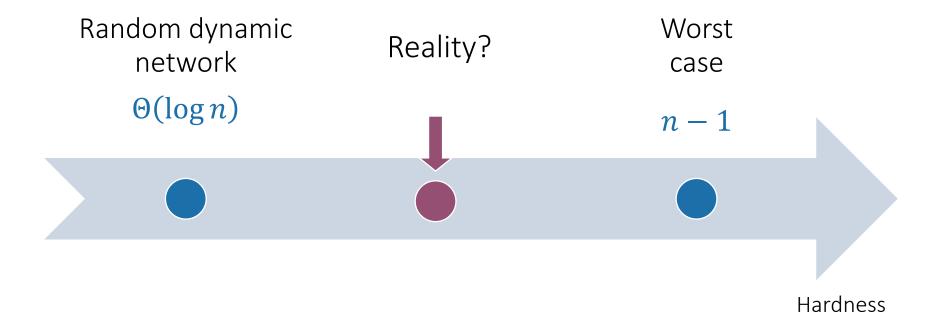
Worst-Case Analysis



Worst case: n - 1 time even with D = 3

Our goal: Go beyond the worst-case analysis

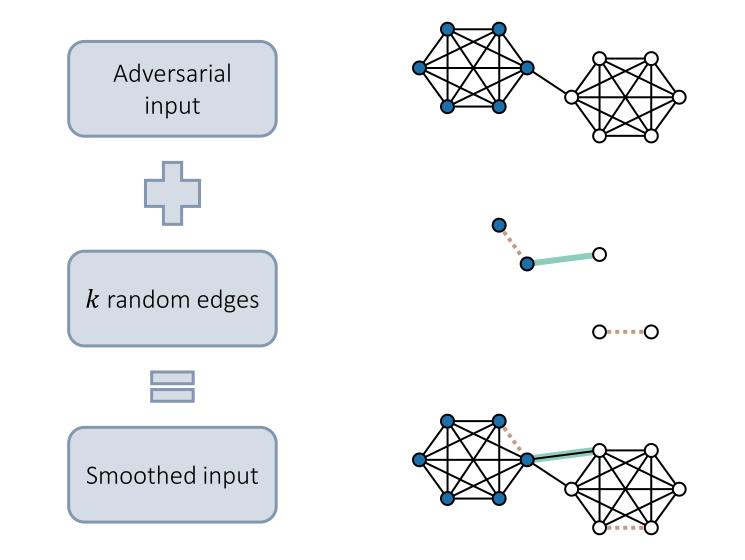
Flooding Time



Previous Work

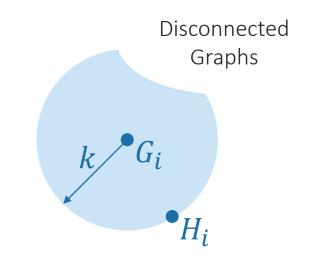
- Pivoting rules for the simplex algorithm [Spielman and Teng '04]
- ...
- **Dynamic networks** [Dinitz, Fineman, Gilbert, Newport '18]
- MST in dynamic networks [Chatterjee, Pandurangan, Pham '20]
- Models of Smoothing in Dynamic Networks [Meir, Paz, Schwartzman '20]
- Load Balancing in Dynamic Networks [Gilbert, Meir, Paz, Schwartzman '21]

Smoothed Analysis



Integer Noise – Oblivious

- Integer Noise: Pick a random graph with Hamming distance $\leq k$
- Adversary: G_1, G_2, \dots
- Smoothed: H_1, H_2, \dots
- $H_i \sim \text{ball}(G_i, k)$
 - Note: Most graphs in ball(G_i, k) are at distance $\Omega(k)$ from G_i



Integer Noise – Oblivious

[DFGN'18]

Smoothed edges $\approx k$ edges

Adversary

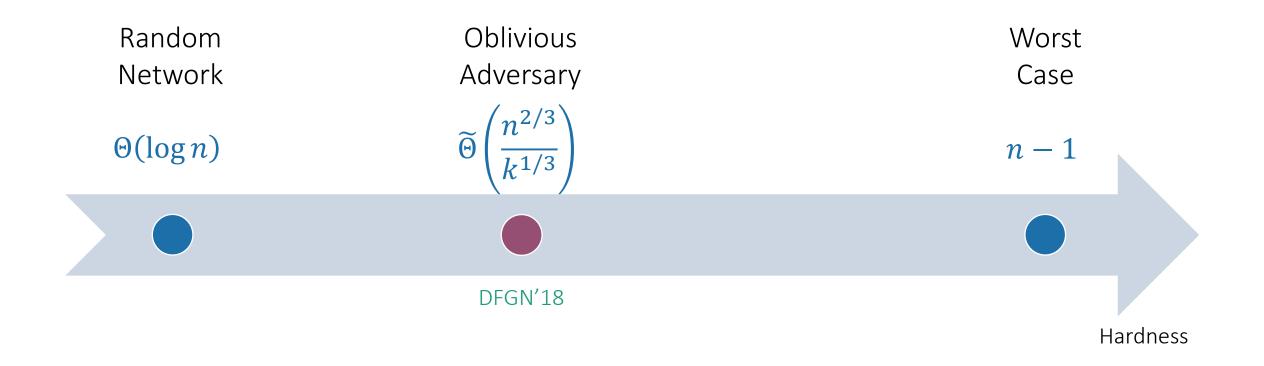
Smoothed

Time

Integer Noise - Results

[DFGN'18]

- Flooding in $\widetilde{\Theta}(n^{2/3}/k^{1/3})$ w.h.p.
- Polynomial gap between no noise (k = 0) and minimal noise (k = 1)
- Questions:
 - 1. Gap
 - 2. Adaptive adversary
 - 3. Responsive noise

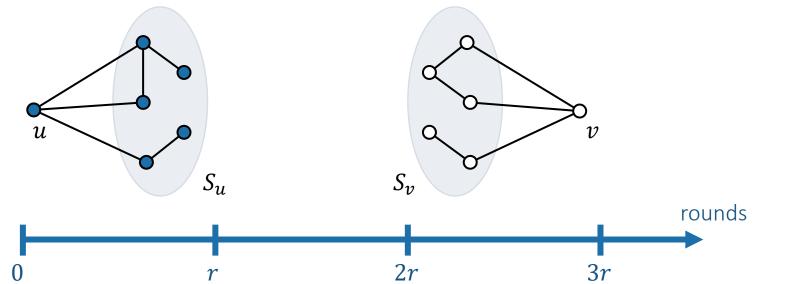


- Oblivious adversary, $\sim k$ random edges per round
- Fix a source u, arbitrary node v

11

• Choose $r = \widetilde{\Theta}(n^{2/3}/k^{1/3})$, analyze 3r rounds

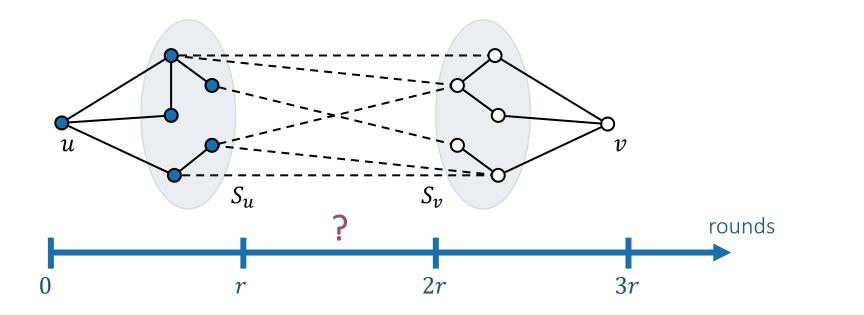
- Let S_u : nodes informed in rounds 1, ..., r
 - Each round: at least one new informed node, so $|S_u| \ge r$
- Let S_v : similarly, nodes that will inform v in rounds 2r + 1, ..., 3r
 - Again $|S_v| \ge r$
 - Depends on obliviousness



• Rounds r + 1, ..., 2r?

$$r = \widetilde{\Theta} \left(n^{2/3} / k^{1/3} \right)$$

- Single round: some edge from $S_u \times S_v$ appears w.p. kr^2/n^2 (lemma)
- r rounds: edge from $S_u \times S_v$ appears w.p. $1 (1 kr^2/n^2)^r \ge 1 n^{-c}$
 - Also for fractional k

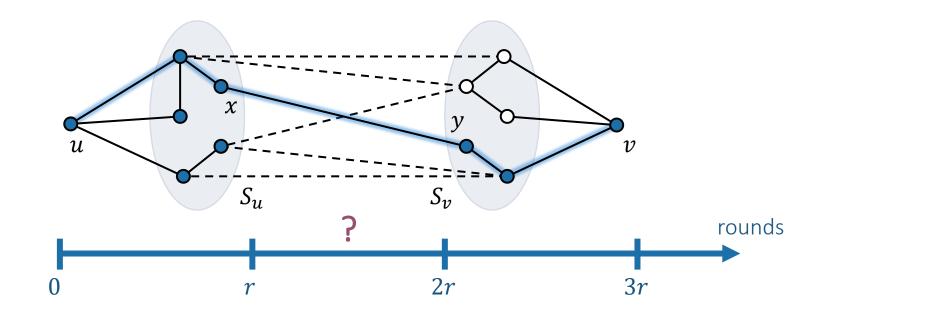


• Rounds r + 1, ..., 2r?

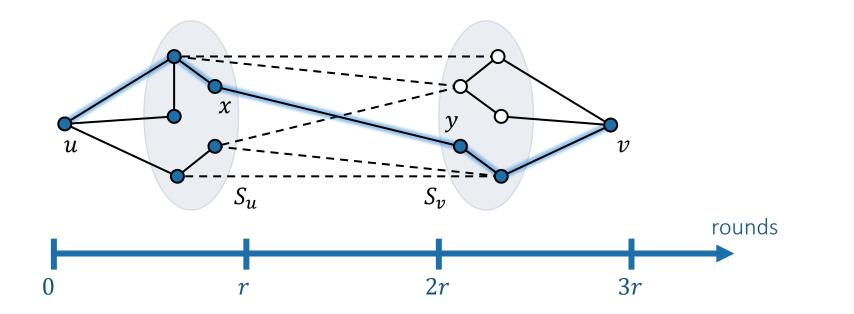
$$r = \widetilde{\Theta} \left(n^{2/3} / k^{1/3} \right)$$

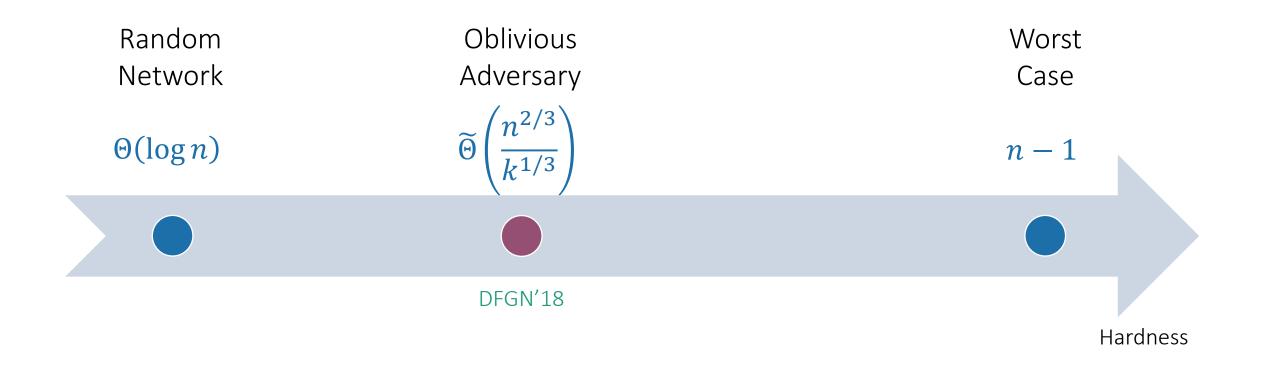
17

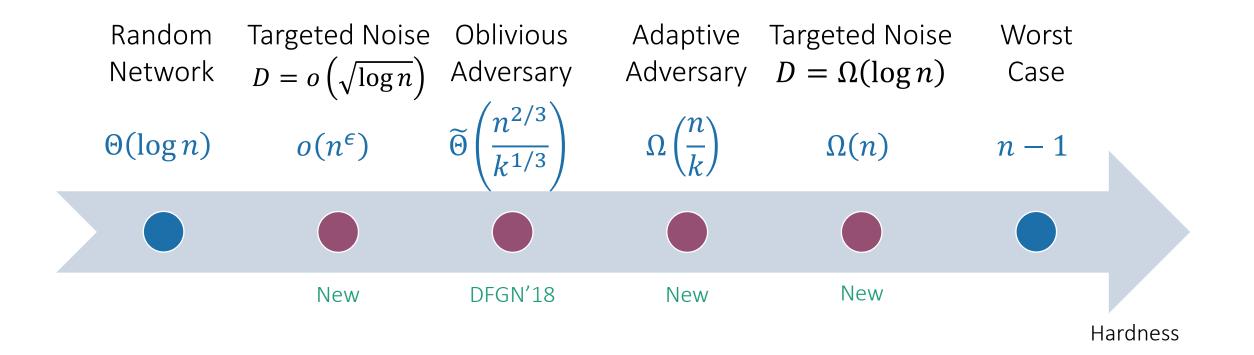
- Single round: some edge from $S_u \times S_v$ appears w.p. kr^2/n^2 (lemma)
- r rounds: edge from $S_u \times S_v$ appears w.p. $1 (1 kr^2/n^2)^r \ge 1 n^{-c}$
 - Also for fractional k

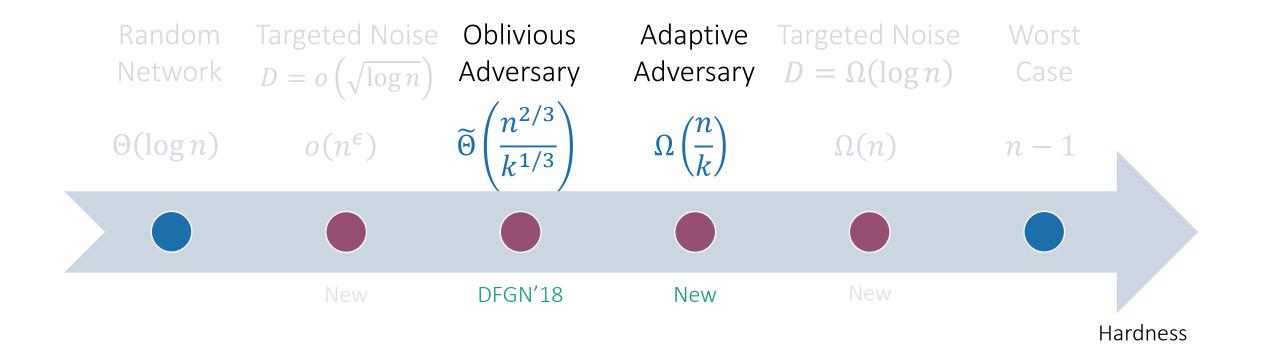


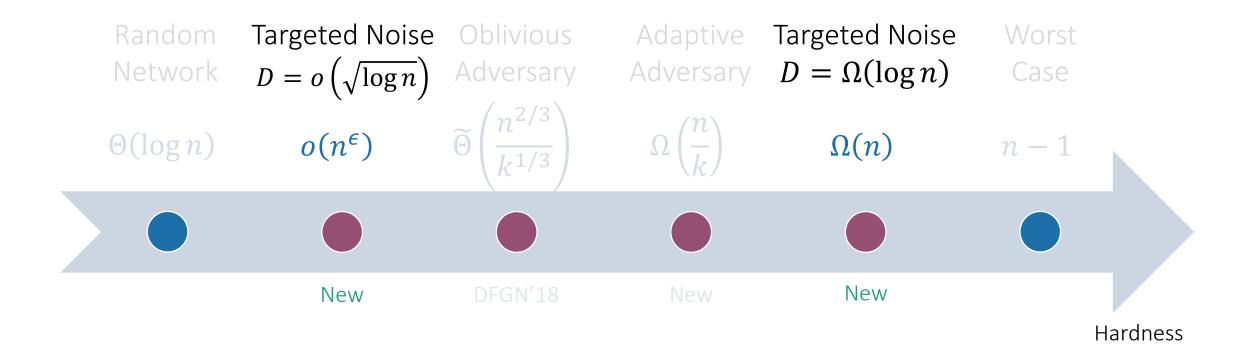
- Flooding after $3r = \tilde{\Theta}(n^{2/3}/k^{1/3})$ rounds w.h.p.
 - By a union bound over all nodes
- Note: highly depends on the obliviousness of the adversary
 - Otherwise S_{v} cannot be defined

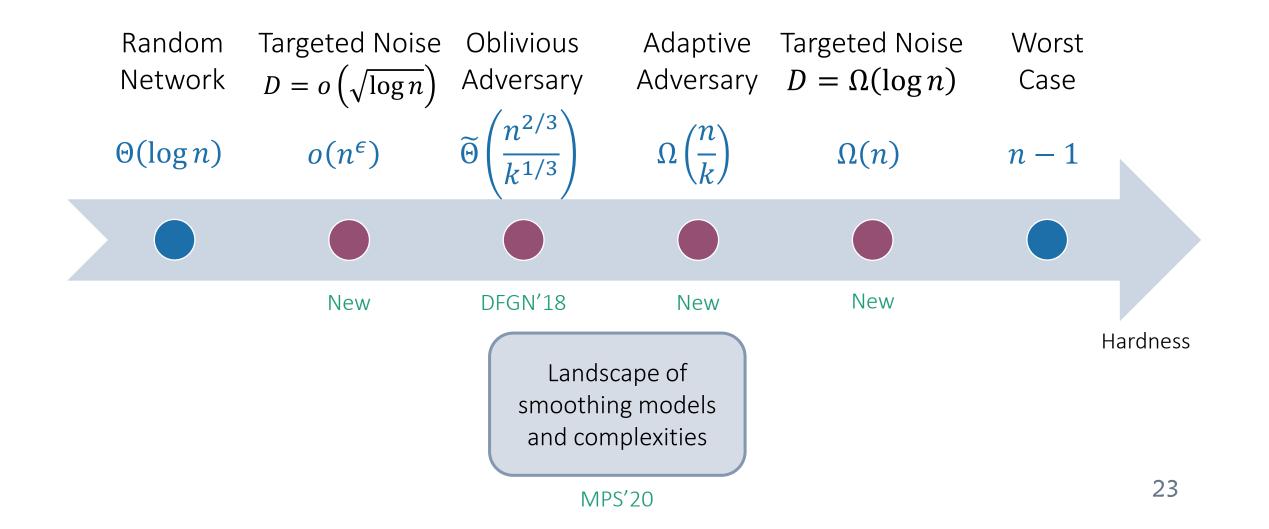












[MPS'20]

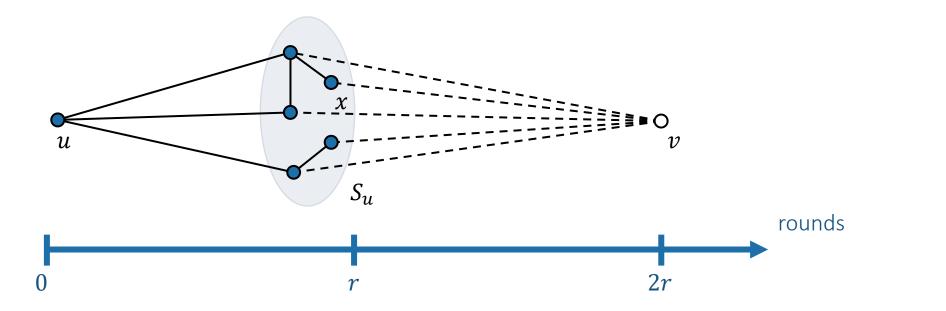
- Adaptive adversary:
 - Picks a graph
 - $\sim k$ edges perturbed at random
 - Sees the perturbed edges

Adversary

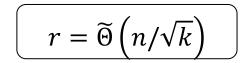
Smoothed

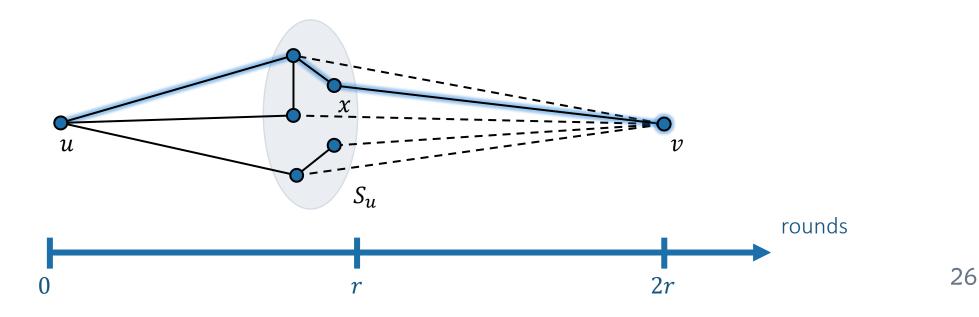
Time 24

- Choose $r = \widetilde{\Theta}\left(n/\sqrt{k}\right)$, analyze 2r rounds
- Let S_u : nodes informed in rounds 1, ..., r; $|S_u| \ge r$

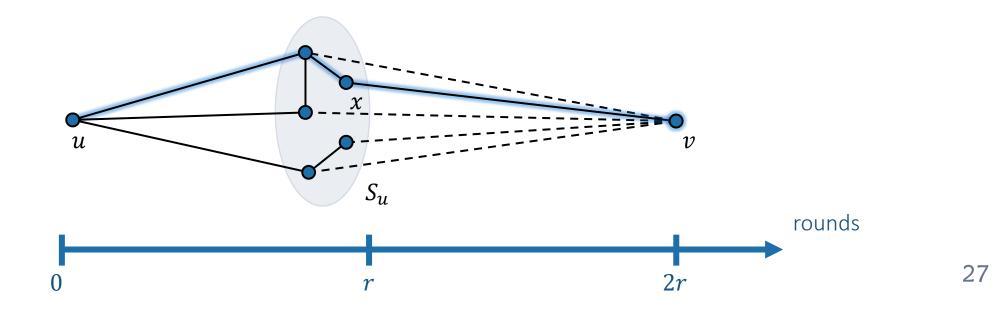


- Rounds r + 1, ..., 2r,
- Single round: edge from S_u to v w.p. kr/n^2 (lemma)
- r rounds: edge from S_u to v w.p. $1 (1 kr/n^2)^r \ge 1 n^{-c}$





- Flooding after $2r = \widetilde{\Theta}(n/\sqrt{k})$ rounds w.h.p.
- Exists lower bound: $\widetilde{\Omega}(n/k)$
 - Cannot improve the dependence on n



Targeted Noise

[MPS'20]

- Targeted Noise:
 - Adaptive/oblivious adversary
 - Each change happens w.p. 1ϵ

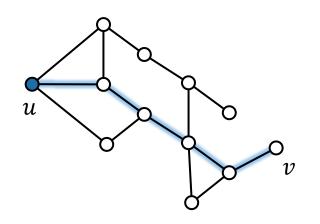
Adversary

Smoothed

Time 28

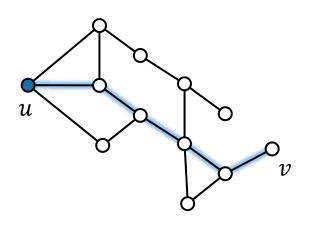
Targeted Noise - Upper Bound

- Small diameter
- Consider a shortest (u, v)-path P_{uv}
- $|P_{uv}| \leq D$



Targeted Noise - Upper Bound

- In *D* rounds
 - Each $e \in P_{uv}$ exists in all D rounds w.p. $\Omega(\epsilon^D)$
 - P_{uv} exists in all D rounds w.p. $\Omega\left(\epsilon^{D^2}\right)$
 - In which case v is informed



Targeted Noise - Upper Bound

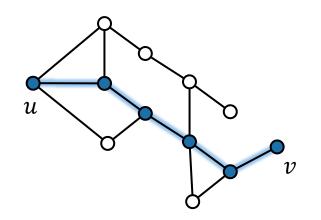
• After *tD* rounds

• A node
$$v$$
 is uninformed w.p. $O\left(\left(1-\epsilon^{D^2}\right)^t\right)$

• Set $t = \Theta\left(\epsilon^{-D^2} \log n\right)$

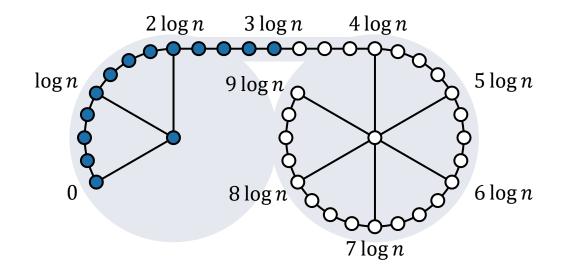
• All nodes informed in *tD* rounds w.h.p.

• For
$$D = o\left(\sqrt{\log n}\right)$$
, $tD = o(n^{\delta})$ for any constant δ

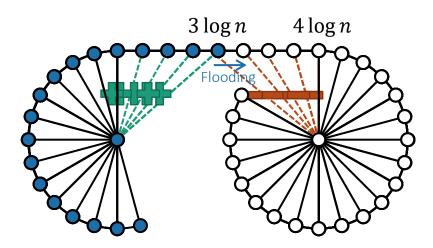


Targeted Noise - Lower Bound

Targeted Noise - Lower Bound



Targeted Noise - Lower Bound



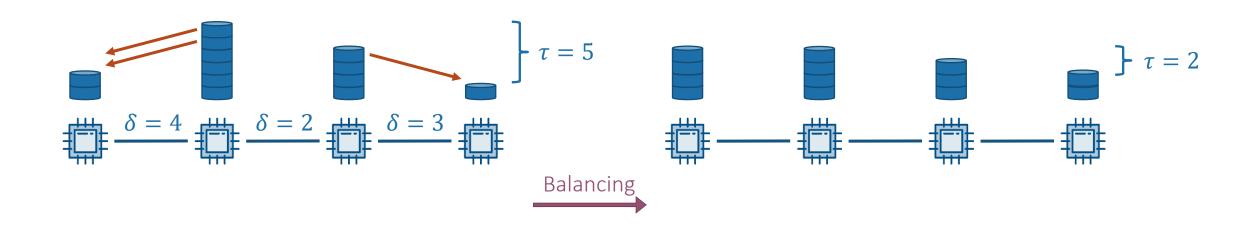
Flooding takes n - 1 rounds w.h.p.

Bounds on Flooding Time

	Model	Upper Bound	Lower Bound	Ref.
Responsive Noise	Non-Responsive Noise Oblivious Adversary	$\tilde{O}\big(n^{2/3}/k^{1/3}\big)$	$\Omega(\min\{n/k, n^{2/3}/k^{1/3}\})$	[Dinitz et al. '18] + NEW
	Non-Responsive Noise Adaptive Adversary	$\tilde{O}\!\left(n/k^{1/2} ight)$	$\widetilde{\Omega}(n/k)$	NEW
	Proportional Noise Oblivious Adversary	$\tilde{O}\big(n^{2/3}(D/\epsilon)^{1/3}\big)$		NEW
	Proportional Noise Adaptive Adversary	0(n)	$\Omega(n)$	NEW
	Targeted Noise	$O\left(D\log n/\epsilon^{D^2}\right)$	$\Omega(n)$ Even for $D \in \Theta(\log n)$	NEW

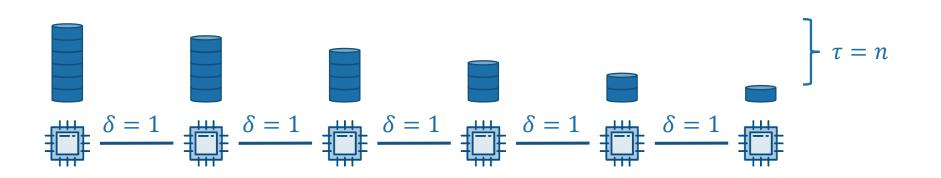
Distributed Load Balancing

[GMPS'21]



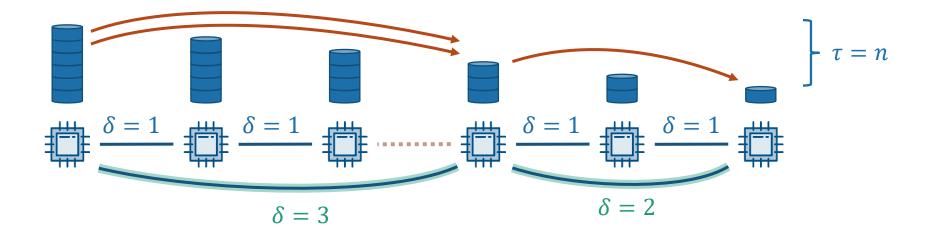
Local Load Balancing

• Dynamic networks: Getting constant au is impossible!



Local Load Balancing

- Worst case: Getting constant τ is impossible!
- Smoothed dynamic networks: Balancing in $\tilde{O}\left(\frac{n^2}{k}\log\frac{1}{\tau}\right)$



Conclusion & Open Problems

Conclusion

- Many models of smoothing
- Have to choose a model by the concrete system

Open problems

- Beyond flooding and load balancing
- Application-driven models of smoothing

