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Spielman and Teng ’04:
The simplex algorithm 

behaves like this



• A smoothed linear program:

A linear program + Gaussian noise 

Smoothed Analysis

Main result
The simplex algorithm on a 
smoothed linear program 

takes polynomial time

[Spielman and Teng ‘04]



• Connected 𝑛-node graph (𝑛-unite synchronous network)

• Propagate information to all the network

• Worst-case: Θ 𝐷 = diameter time

Flooding

Time



• Links change over time

• Worst case: 𝑛 − 1 time 

• even with 𝐷 = 3

Dynamic Network

Time



Worst-Case Analysis

Worst case: 𝑛 − 1 time even with 𝐷 = 3

Our goal: Go beyond the worst-case analysis

Time

Flooding Change
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• Pivoting rules for the simplex algorithm [Spielman and Teng ‘04]

• …

• Dynamic networks [Dinitz, Fineman, Gilbert, Newport ’18]

• MST in dynamic networks [Chatterjee, Pandurangan, Pham ‘20]

• Models of Smoothing in Dynamic Networks [Meir, Paz, Schwartzman ‘20]

• Load Balancing in Dynamic Networks [Gilbert, Meir, Paz, Schwartzman ‘21]

Previous Work



Smoothed Analysis

Adversarial 
input

𝑘 random edges

Smoothed input



• Integer Noise: Pick a random graph with Hamming distance ≤ 𝑘

• Adversary: 𝐺1, 𝐺2, …

• Smoothed: 𝐻1, 𝐻2, …

• 𝐻𝑖~ball 𝐺𝑖 , 𝑘

• Note: Most graphs in ball 𝐺𝑖 , 𝑘 are at distance Ω(𝑘) from 𝐺𝑖

Integer Noise – Oblivious

𝐺𝑖

𝐻𝑖

𝑘

Disconnected 
Graphs

[DFGN’18]



Smoothed edges ≈ 𝑘 edges

Integer Noise – Oblivious

Smoothed

Time

Adversary

[DFGN’18]



• Flooding in ෩Θ(𝑛2/3/𝑘1/3) w.h.p.

• Polynomial gap between no noise (𝑘 = 0) and minimal noise (𝑘 = 1)

• Questions:

1. Gap

2. Adaptive adversary 

3. Responsive noise

Integer Noise - Results
[DFGN’18]



Flooding – Some Results
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• Oblivious adversary, ~𝑘 random edges per round

• Fix a source 𝑢, arbitrary node 𝑣

• Choose 𝑟 = ෩Θ 𝑛2/3/𝑘1/3 , analyze 3𝑟 rounds

Oblivious Adv. - Upper Bound

𝑣𝑢



• Let 𝑆𝑢: nodes informed in rounds 1,… , 𝑟

• Each round: at least one new informed node, so 𝑆𝑢 ≥ 𝑟

• Let 𝑆𝑣: similarly, nodes that will inform 𝑣 in rounds 2𝑟 + 1,… , 3𝑟

• Again 𝑆𝑣 ≥ 𝑟

• Depends on obliviousness

𝑣𝑢

Oblivious Adv. - Upper Bound

𝑆𝑢

0 𝑟 2𝑟 3𝑟

rounds
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• Rounds r + 1,… , 2𝑟?

• Single round: some edge from 𝑆𝑢 × 𝑆𝑣 appears w.p. 𝑘𝑟2/𝑛2 (lemma)

• 𝑟 rounds: edge from 𝑆𝑢 × 𝑆𝑣 appears w.p. 1 − 1 − 𝑘𝑟2/𝑛2
𝑟
≥ 1 − 𝑛−𝑐

• Also for fractional 𝑘

𝑣𝑢

Oblivious Adv. - Upper Bound

𝑆𝑢 𝑆𝑣

0 𝑟 2𝑟 3𝑟

rounds

𝑟 = ෩Θ 𝑛2/3/𝑘1/3

?



• Rounds r + 1,… , 2𝑟?

• Single round: some edge from 𝑆𝑢 × 𝑆𝑣 appears w.p. 𝑘𝑟2/𝑛2 (lemma)

• 𝑟 rounds: edge from 𝑆𝑢 × 𝑆𝑣 appears w.p. 1 − 1 − 𝑘𝑟2/𝑛2
𝑟
≥ 1 − 𝑛−𝑐

• Also for fractional 𝑘

Oblivious Adv. - Upper Bound

0 𝑟 2𝑟 3𝑟

rounds?

𝑣𝑢

𝑆𝑢 𝑆𝑣

𝑥
𝑦

𝑟 = ෩Θ 𝑛2/3/𝑘1/3



• Flooding after 3𝑟 = ෩Θ 𝑛2/3/𝑘1/3 rounds w.h.p.

• By a union bound over all nodes

• Note: highly depends on the obliviousness of the adversary

• Otherwise 𝑆𝑣 cannot be defined

Oblivious Adv. - Upper Bound

0 𝑟 2𝑟 3𝑟

rounds

𝑣𝑢

𝑆𝑢 𝑆𝑣

𝑥
𝑦



Flooding – Some Results
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• Adaptive adversary:

• Picks a graph

• ~𝑘 edges perturbed at random

• Sees the perturbed edges

Adaptive Adv. - Upper Bound
[MPS’20]
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𝑣𝑢

• Choose 𝑟 = ෩Θ 𝑛/ 𝑘 , analyze 2𝑟 rounds

• Let 𝑆𝑢: nodes informed in rounds 1,… , 𝑟; 𝑆𝑢 ≥ 𝑟

Adaptive Adv. - Upper Bound

𝑆𝑢

0 𝑟 2𝑟

rounds

𝑥



• Rounds 𝑟 + 1,… , 2𝑟, 

• Single round: edge from 𝑆𝑢 to 𝑣 w.p. 𝑘𝑟/𝑛2 (lemma)

• 𝑟 rounds: edge from 𝑆𝑢 to 𝑣 w.p. 1 − 1 − 𝑘𝑟/𝑛2
𝑟
≥ 1 − 𝑛−𝑐

𝑣𝑢

Adaptive Adv. - Upper Bound

𝑆𝑢

0 𝑟 2𝑟

rounds

𝑥

𝑟 = ෩Θ 𝑛/ 𝑘



𝑣𝑢

• Flooding after 2𝑟 = ෩Θ 𝑛/ 𝑘 rounds w.h.p.

• Exists lower bound: ෩Ω 𝑛/𝑘

• Cannot improve the dependence on 𝑛

Adaptive Adv. - Upper Bound

𝑆𝑢

0 𝑟 2𝑟

rounds

𝑥



• Targeted Noise:

• Adaptive/oblivious adversary

• Each change happens w.p. 1 − 𝜖

Targeted Noise
[MPS’20]

Smoothed

Adversary

Time



• Small diameter

• Consider a shortest 𝑢, 𝑣 -path 𝑃𝑢𝑣

• 𝑃𝑢𝑣 ≤ 𝐷

Targeted Noise - Upper Bound

𝑣

𝑢



• In 𝐷 rounds

• Each 𝑒 ∈ 𝑃𝑢𝑣 exists in all 𝐷 rounds w.p. Ω 𝜖𝐷

• 𝑃𝑢𝑣 exists in all 𝐷 rounds w.p. Ω 𝜖𝐷
2

• In which case 𝑣 is informed

Targeted Noise - Upper Bound

𝑣

𝑢



𝑣

𝑢

• After 𝑡𝐷 rounds

• A node 𝑣 is uninformed w.p. 𝑂 1 − 𝜖𝐷
2 𝑡

• Set 𝑡 = Θ 𝜖−𝐷
2
log 𝑛

• All nodes informed in 𝑡𝐷 rounds w.h.p.

• For 𝐷 = 𝑜 log 𝑛 , 𝑡𝐷 = 𝑜 𝑛𝛿 for any constant 𝛿

Targeted Noise - Upper Bound



4 log 𝑛3 log 𝑛2 log 𝑛

Targeted Noise - Lower Bound

9 log 𝑛6 log 𝑛5 log 𝑛 8 log 𝑛7 log 𝑛log 𝑛0



0

log 𝑛

4 log 𝑛3 log 𝑛2 log 𝑛

6 log 𝑛

5 log 𝑛

7 log 𝑛

8 log 𝑛

Targeted Noise - Lower Bound

9 log 𝑛



Targeted Noise - Lower Bound

Flooding

Flooding takes 𝑛 − 1 rounds 
w.h.p.

4 log 𝑛3 log 𝑛



Model Upper Bound Lower Bound Ref.

Non-Responsive Noise
Oblivious Adversary

෨𝑂 𝑛2/3/𝑘1/3 Ω min 𝑛/𝑘, 𝑛2/3/𝑘1/3
[Dinitz et al. ’18]
+ NEW

Non-Responsive Noise
Adaptive Adversary

෨𝑂 𝑛/𝑘1/2 ෩Ω 𝑛/𝑘
NEW

Proportional Noise
Oblivious Adversary

෨𝑂 𝑛2/3 𝐷/𝜖 1/3 NEW

Proportional Noise
Adaptive Adversary

𝑂 𝑛 Ω 𝑛
NEW

Targeted Noise 𝑂 𝐷 log𝑛 /𝜖𝐷
2 Ω 𝑛

Even for 𝐷 ∈ Θ log 𝑛
NEW

Bounds on Flooding Time

Responsive 
Noise



Distributed Load Balancing

Balancing

𝜏 = 2𝜏 = 5

𝛿 = 4 𝛿 = 2 𝛿 = 3

[GMPS’21]



• Dynamic networks: Getting constant 𝜏 is impossible!

Local Load Balancing

𝜏 = 𝑛

𝛿 = 1 𝛿 = 1 𝛿 = 1 𝛿 = 1 𝛿 = 1



• Worst case: Getting constant 𝜏 is impossible!

• Smoothed dynamic networks: Balancing in ෨𝑂
𝑛2

𝑘
log

1

𝜏

Local Load Balancing

𝜏 = 𝑛

𝛿 = 1 𝛿 = 1 𝛿 = 1 𝛿 = 1

𝛿 = 3 𝛿 = 2



Conclusion & Open Problems

Conclusion

• Many models of smoothing

• Have to choose a model by the concrete system

Open problems

• Beyond flooding and load balancing

• Application-driven models of smoothing

Thank you




