
Symmetry Breaking in
Massive Graphs

Jara Uitto, Aalto University
ADGA 2023

On Friday..

Computer repair
team

The Plan

• MPC intro
• LOCAL VS MPC
• Locality Barrier

• Known Techniques
• Sparsification and round compression
• Derandomization

• New Techniques
• Careful exponentiation
• Total space

graph with 𝒏 nodes and 𝒎	edges

Massively Parallel Computing (MPC)

Massively Parallel Computing (MPC) Model
[Karloff, Suri, Vassilvitskii SODA’10]

𝑴 machines
𝑺 memory per machine
Total space 𝑴 ⋅ 𝑺

Low-space:
𝑺 = 𝑶 𝒏𝜹 , 𝟎 ≤ 𝜹 < 𝟏	
No machine ever sees all the nodes!

Linear space:
𝑺 = /𝑶 𝒏
A sketch fits onto a single machine

MPC vs Message Passing

MPC can simulate 𝑻-rounds
of message passing as long as
𝐍𝑻 𝒗 ≤ 𝑺

MPC and Message Passing
Everyone knows their
neighbors in the beginning.
Assume	Δ < 𝑺.

Design pattern: Graph Exponentation

Collect the 𝑇-hop neighborhoods in 𝑶 log 𝑇
rounds.

Simulate the LOCAL algorithm.

Still restricted by locality!

MPC vs Message Passing

Design pattern: Graph Exponentation

Collect the 𝑇-hop neighborhoods in 𝑶 log 𝑇
rounds.

Simulate the LOCAL algorithm.

Still restricted by locality!

MPC vs Message Passing

Communicate in 𝑮𝟐

Design pattern: Graph Exponentation

Collect the 𝑇-hop neighborhoods in 𝑶 log 𝑇
rounds.

Simulate the LOCAL algorithm.

Still restricted by locality!

MPC vs Message Passing

Δ + 1 -coloring

LOCAL: poly log log 𝑛 rounds [GG’23]

MPC: 𝑂 log log log 𝑛 rounds [CDP’21]

Design pattern: Graph Exponentation

Collect the 𝑇-hop neighborhoods in 𝑶 log 𝑇
rounds.

Simulate the LOCAL algorithm.

Still restricted by locality!

MPC vs Message Passing

Δ + 1 -coloring

LOCAL: poly log log 𝑛 rounds [GG’23]

MPC: 𝑂 log log log 𝑛 rounds [CDP’21]

Global Power: Leader Election

Allows probability amplification
 - Run 𝑂(log 𝑛) parallel repetitions
 - Choose the best outcome

Example [KKSS’20, CPD’21]:
Independent sets of size Ω 𝑛/Δ

LOCAL: Ω(log∗ 𝑛)
MPC: 𝑂 1

MPC vs Message Passing

Global Power: Leader Election

Allows probability amplification
 - Run 𝑂(log 𝑛) parallel repetitions
 - Choose the best outcome

Example [KKSS’20, CPD’21]:
Independent sets of size Ω 𝑛/Δ

LOCAL: Ω(log∗ 𝑛)
MPC: 𝑂 1 !

MPC vs Message Passing

Locality Barrier

Local Algorithm
Runtime 𝑇 𝑛

Locality Barrier
Θ log 𝑇 𝑛

Beyond
o log 𝑇 𝑛

Exponentiation gets
stuck here!

Locally checkable
problems?!

Approximation

Locality Barrier

Local Algorithm
Runtime 𝑇 𝑛

Locality Barrier
Θ log 𝑇 𝑛

Beyond
o log 𝑇 𝑛

Locally checkable
problems?!

Approximation

MIS and Maximal Matching

Maximal Matching

Maximal Independent Set

LOCAL [Gh’16]: O log Δ 	

MPC [GU’19]: *𝑂 log Δ

Locality barrier: Θ log log Δ

??

The Plan

• MPC intro
• LOCAL VS MPC
• Locality Barrier

• Known Techniques
• Sparsification and round compression
• Derandomization

• New Techniques
• Careful exponentiation
• Total space

2) Can we solve the problem
with a small part of the input?

1) Can we solve the problem
efficiently on a sparse graph?

Round Compression and Sparsification

Round Compression and Sparsification

MIS Sparsification Simplified (a lot):
1. Consider Ghaffari’s algorithm that runs in

𝑇 = 𝑂 log Δ rounds.
2. Simulate the algorithm on a sparse (low

degree) subgraph for Ω log Δ rounds.
3. Repeat 𝑂 log Δ times.

𝑂(log Δ ⋅ log log Δ) in total.

Round Compression and Sparsification

MIS Sparsification Simplified (a lot):
1. Consider Ghaffari’s algorithm that runs in

𝑇 = 𝑂 log Δ rounds.
2. Simulate the algorithm on a sparse (low

degree) subgraph for Ω log Δ rounds.
3. Repeat 𝑂 log Δ times.

Seems like a
fundamental
barrier

Black box
application of
exponentiation.

𝑂(log Δ ⋅ log log Δ) in total.

Shattering

MIS Sparsification Simplified (a lot):
After 𝑂 log Δ iterations, the graph
shatters into 𝑂 log 𝑛 sized components.

MPC: gather the components and simulate
LOCAL. Black box

application of
exponentiation.

Coloring

(𝚫 + 𝟏)-Coloring in MPC [CFGUZ’19, CDP’21]:
Split the graph into low-degree subgraphs with
disjoint color palettes in 𝑂 1 rounds.

Post-shattering:
Gather the components and simulate LOCAL. Black box

application of
exponentiation.

LLL and Friends

Fischer & Ghaffari:
Find a partial solution to LLL in O Δ, LOCAL
rounds that shatters the graph.

Post-shattering:
Gather the components and simulate LOCAL. Black box

application of
exponentiation.

Efficient in
sparse graphs.

LLL and Friends

Take home:

A lot of naïve
exponentiation

The Plan

• MPC intro
• LOCAL VS MPC
• Locality Barrier

• Known Techniques
• Sparsification and round compression
• Derandomization

• New Techniques
• Careful exponentiation
• Total space

Derandomization Tools

A Toolbox for Derandomization
Goal: Reduce the number of required
random bits to 𝑂 log 𝑛 per node.

Agree globally and deterministically
on a common random seed.

Derandomization Tools

A Toolbox for Derandomization
1. Conditional expectations
2. Limited independence
3. Pseudorandom generators

MIS: 𝑂(log Δ + log log 𝑛)
Coloring: 𝑂 log log log 𝑛
LLL: 𝑂 poly	Δ + log log log 𝑛

Connected components (CC’21):
𝑂 log diam + log log 𝑛

All (at least indirectly) employ naïve exponentiation

The Plan

• MPC intro
• LOCAL VS MPC
• Locality Barrier

• Known Techniques
• Sparsification and round compression
• Derandomization

• New Techniques
• Total space
• Careful exponentiation

Naïve Exponentiation – So What?

• Increases total space demand
• Connected components is an exception (linear total space). But it’s “slow”.

• Is it worth improving?
• Linear is prettier (and optimal)
• Wasted potential?!

Symmetry breaking
Pre-shattering: 𝑛-./ -

Post-shattering: 𝑛-.0(-)

Naïve Exponentiation – So What?

Wasted potential?!

Example: MIS

Current SOTA seems fundamentally
stuck at Θ log Δ .

Some room to improve by smarter
exploration (exponentiation)?

Need new ideas!

How to change
the game?

Naïve Exponentiation – So What?

Limit total space
to linear (tight)?

Locally Checkable Problems:
Almost all approaches rely, to some
extent, on naïve exponentiation.

Yields overhead in total space.

Naïve Exponentiation – So What?

Ideally:
Avoid exponentiation altogether and beat
the locality barrier.

At the least:
Come up with new ideas and algorithms.

Probably:
Learn ways to collect local data fast

The Plan

• MPC intro
• LOCAL VS MPC
• Locality Barrier

• Known Techniques
• Sparsification and round compression
• Derandomization

• New Techniques
• Total space
• Careful exponentiation Locally checkable

labeling problems

Careful Exponentiation

Solving LCLs with locality
Θ log∗ 𝑛

In 𝑂 log log∗ 𝑛 rounds of
MPC with linear total space.

Meets the locality barrier.

Conditionally optimal with
fine print

Global LCLs in Forests

In 𝑂 log diam MPC rounds
with linear total space.

Conditionally optimal

LCLs in the “Tiny” Regime

Theorem [CKP’19]:

Any LCL with deterministic locality
𝑜 log 𝑛 can be solved with a canonical
(LOCAL) algorithm in 𝑂 log∗ 𝑛 rounds.

Need a distance-𝑘 coloring

Get it by Δ$-coloring of 𝐺%
Linial: 𝑂 log∗ 𝑛 local rounds

Coloring Pseudo-Forests

𝚫𝟐-coloring of 𝑮𝒌

Since Δ and 𝑘 are constants, can
reduce to 3-coloring pseudo-forests
and color reduction.

Important: Focus on MPC
issues.

A tempting approach:
Gather 𝑂 log∗ 𝑛 -neighborhood
And simulate Linial’s

Requires Ω 𝑛 log∗ 𝑛 total space!

Coloring a Directed Pseudo-Forest
Careful Exploration

Run just one round of Linial’s
 - Turn IDs into log log 𝑛 -bit colors

Collect a vector of size 𝑂(
)

log log 𝑛 ⋅
log∗ 𝑛 = 𝑂(log 𝑛) bits

Total space: 𝑂 𝑛 words.

Issue:
Need to store 𝑂(log∗ 𝑛) machine
addresses of Ω log 𝑛 bits.

Coloring a Directed Pseudo-Forest
Careful Exploration

Run just one round of Linial’s
 - Turn IDs into log log 𝑛 -bit colors

Collect a vector of size 𝑂(
)

log log 𝑛 ⋅
log∗ 𝑛 = 𝑂(log 𝑛) bits

Only store the address of farthest
machine, 𝑂(log 𝑛) bits.

Total space: 𝑂 𝑛 words.

LCLs in the “Tiny” Regime

Theorem [BBFLMOU’20]

For any LCL 𝑃 with locality 𝑜(log 𝑛), there is an MPC
algorithm that solves 𝑃 in 𝑂(log log∗ 𝑛) rounds.

Nice property:
Optimal in terms of
memory parameters.

Nice property:
Runtime potentially
optimal. 🤨

Nice property:
Goes beyond naïve
exponentiation.

Conditional Lower Bounds

Theorem [GKU’19, CPD’21]

Given the connectivity conjecture,
there is no component-stable
algorithm that beats 𝑂 log locality

Connectivity Conjecture

It takes Ω log diam time to
find connected components.

Component stable

Outputs on different
components are independent

Open Question

Is there a component unstable
algorithm that beats the
locality barrier for a locally
checkable problem?

Affirmative for approximation.

LCLs in the “Tiny” Regime

Theorem [BBFLMOU’20]

For any LCL 𝑃 with locality 𝑜(log 𝑛), there is an MPC
algorithm that solves 𝑃 in 𝑂(log log∗ 𝑛) rounds.

Nice property:
Optimal in terms of
memory parameters.

Nice property:
Runtime potentially
optimal. 🤨

Nice property:
Goes beyond naïve
exponentiation.

The Plan

• MPC intro
• LOCAL VS MPC
• Locality Barrier

• Known Techniques
• Sparsification and round compression
• Derandomization

• New Techniques
• Total space
• Careful exponentiation Locally checkable

labeling problems

Connectivity on Forests

Theorem [BLMOU’23]:
There is an MPC algorithm to find
the connected components of a
forest in 𝑂 log diam rounds.

Almost directly yields an algorithm
to solve all LCLs on forests

Conditionally optimal

In terms of memory

Holds for component
unstable algorithms!

🤨

Finding Leaves

To solve LCLs, need
to find leaves from
all but one branch.

Naïve
exponentiation can
lead to storing 𝑇-

𝑇!

Finding Leaves

To solve LCLs, need
to find leaves from
all but one branch.

Naïve
exponentiation can
lead to storing 𝑇-

𝑇!

𝐍𝑻 𝒗 > 𝑺

Finding Leaves

To solve LCLs, need
to find leaves from
all but one branch.

Naïve
exponentiation can
lead to storing 𝑇-

𝑇!

Solve subtrees first

Finding Leaves

To solve LCLs, need
to find leaves from
all but one branch.

Key idea:
Balanced exploration

𝑇! 𝑇"

𝑇#

Adversary cannot hide
leaves to a certain branch

Connectivity on Forests

Theorem [BLMOU’23]:
Connected components of a forest
in 𝑂 log diam rounds.

Almost directly yields an algorithm
to solve all LCLs on forests

Nice property:
Other connectivity
results have a
dependency on 𝑛

Nice property:
Global LCLs are hard
regardless of
component-stability

Chicken vs Egg

Is there a difference between (?)
1. First creating a smart subgraph

and doing naïve exponentiation

2. Smart exponentiation on the
input graph

Conclusion

Graph exponentiation,
a necessary evil?

Conditionally optimal
algorithms

Thank you!
More on Thursday
by Rustam

The Plan

• Known techniques:
• sampling + solve locally (this is essentially linear space)

• If I mention this, I should advertise our ruling set talk)
• Sample and gather by Shreyas (pretty much round compression??)

• sparsification
• Round compression + graph exponentiation

• Deterministic random bits
• Conditional expectations (check references)
• Annoying O(1) algorithm for large independent sets
• PRGs (check references)

• Shattering
• Used in combination with round compression of LOCAL
• post shattering is usually expensive

Where total space is needed

• Finding an MIS of size Ω 𝑛/Δ takes Ω(log∗ 𝑛) in LOCAL and 𝑂(1) in low-
space MPC.

• Kawarabayashi, Khoury, Schild, and Schwartzman [KKSS’20]
• Czumaj, Davies, Parter [CDP’21]

• Derandomization tools for MIS, LLL, etc with 𝑛"#$(") total space [CDP’21]
• 𝑜 1 contains collecting a ball of Δ! + poly log log 𝑛 radius.
• log Δ + log log log 𝑛 time for large Δ with 𝑛"#$ " total space

• All randomized algorithms can be derandomized with polynomial number
of machines
• Probability boosting (need to be able to verify correctness)
• Since success probability is high enough, there is a correct seed (Proof 6.1)

Connectivity

• Randomized algorithms by Andoni, Stein, Song, Wang, Zhong [ASSWZ’18]
and Behnezhad, Dhulipala, Esfandiari, Łącki, Mirrokni [BDELM’19] do
connectivity in 𝑂 log𝐷 time for dense graphs.
• Need Ω log log 𝑛 for sparse graph. Needed in order to get concentration.
• The same bound holds for deterministic algorithms Coy, Czumaj [CC’22]. They use

derandomization and hence, at least indirectly, inherently require Ω log log 𝑛 .
• Actually, one can shrink the graph by a poly log 𝑛 factor in 𝑂 log log 𝑛

rounds which “gives more total space”
• Nothing wrong with this, but surpassing this bound requires new ideas
• Explicit disclaimer that I am not saying that this approach cannot lead anywhere

• Sparse graphs are hard?!
• Can we get 𝑂 log𝐷 in sparse graphs? Topic for another talk?

Locally Checkable Labelings

• Revisit the LOCAL algorithms for LCLs
• On forests

• Tiny regime: Θ log∗ 𝑛
• Mid regime: Θ log 𝑛
• High regime: Θ 𝑛"/'

• Connectivity result gives 𝑂 log𝐷 for forests
• Leader election
• Even stronger results through the hierarchical clustering: solve dynamic

programming
• How does all of this relate to the LLL (+ other) results by CDP?

• At least all LCLs do not satisfy any of the LLL criteria

Thinking Inside the Box

Pointer hopping:
Tiny regime of LCLs

Careful exponentiation:
High regime of LCLs

Solving the Tiny Regime

• LOCAL reduction to coloring a directed pseudo-forest

Forest Connectivity

• All LCLs in 𝑂 log𝐷 rounds.
• Careful/balanced exponentiation

