Approximate agreement on graphs revisited ADGA 2023

Joel Rybicki Humboldt University of Berlin

October 9, 2023

Based on joint work with: Dan Alistarh Faith Ellen Thomas Nowak

Outline

- 1. Approximate agreement on graphs
- 2. Wait-free shared memory algorithms
- 3. Impossibility results
- 4. Open problems

on graphs algorithms

Distributed agreement tasks

Distributed agreement tasks

Distributed agreement tasks: consensus

Distributed agreement tasks: consensus

e.g., Fischer, Lynch, Paterson (1985)

Distributed agreement tasks: approximate agreement

Distributed agreement tasks: approximate agreement over real numbers

Distributed agreement tasks: approximate agreement over real numbers

Distributed agreement tasks: approximate agreement over real numbers

A fixed set V of values

A fixed set V of values

Agreement: distance(y_i, y_j) $\leq \varepsilon$ for any y_i, y_j

A fixed set V of values

Agreement: distance(y_i, y_j) $\leq \varepsilon$ for any y_i, y_j

Validity:

 $Y \subseteq \langle X \rangle,$

where $< \cdot >$ is a closure operator on V

A fixed set **V** of values

Agreement: distance(y_i, y_j) $\leq \varepsilon$ for any y_i, y_j

Validity:

 $Y \subseteq \langle X \rangle$

where $\langle \cdot \rangle$ is a closure operator on V

= "outputs are close to one another and reside in some **closure** of the **input** values"

A fixed set **V** of values

Agreement: distance(y_i, y_j) $\leq \varepsilon$ for any y_i, y_j

Validity:

 $Y \subseteq \langle X \rangle$

where $\langle \cdot \rangle$ is a closure operator on V

= "outputs are close to one another and reside in some **closure** of the **input** values"

e.g., Dolev, Lynch, Pinter, Stark, Weihl (1986) Abraham, Amit, Dolev (2004) approximate agreement over reals

A fixed set *V* of values

Agreement: distance(y_i, y_j) $\leq \varepsilon$ for any y_i, y_j

Validity:

 $Y \subseteq \langle X \rangle$

where $\langle \cdot \rangle$ is a closure operator on V

= "outputs are close to one another and reside in some **closure** of the **input** values"

A fixed set **V** of values

Agreement: distance(y_i, y_j) $\leq \varepsilon$ for any y_i, y_j

Validity:

 $Y \subseteq \langle X \rangle$

where $\langle \cdot \rangle$ is a closure operator on V

= "outputs are close to one another and reside in some **closure** of the **input** values"

e.g. Nowak and Rybicki (DISC 2019) approximate agreement on graphs and lattices

Inputs and outputs are vertices of a fixed graph G

Inputs and outputs are vertices of a fixed graph G

Agreement: outputs form a clique of **G**

Inputs and **outputs** are vertices of a fixed graph **G**

Agreement: outputs form a clique of **G**

Inputs and **outputs** are vertices of a fixed graph **G**

Agreement: outputs form a clique of **G**

Shortest path validity: each output on a shortest path between two inputs

"shortest path convex hull"

Inputs and **outputs** are vertices of a fixed graph **G**

Agreement: outputs form a clique of **G**

Shortest path validity: each output on a shortest path between two inputs

"shortest path convex hull"

Inputs and **outputs** are vertices of a fixed graph **G**

Agreement: outputs form a clique of **G**

Inputs and **outputs** are vertices of a fixed graph **G**

Agreement: outputs form a clique of **G**

Inputs and outputs are vertices of a fixed graph G

Agreement: outputs form a clique of **G**

Inputs and outputs are vertices of a fixed graph G

Agreement: outputs form a clique of **G**

Inputs and outputs are vertices of a fixed graph G

Agreement: outputs form a clique of **G**

Each output on a *minimal path* between inputs (every path that is an induced path in **G**)

Each output on a *minimal path* between inputs (every path that is an induced path in **G**)

Each output on a *minimal path* between inputs (every path that is an induced path in **G**)

Each output on a *minimal path* between inputs (every path that is an induced path in **G**)

Each output on a *minimal path* between inputs (every path that is an induced path in **G**)

If set X of inputs forms a clique in G, then $Y \subseteq X$ (otherwise set Y of outputs can be any clique)

If set X of inputs forms a clique in G, then $Y \subseteq X$ (otherwise set Y of outputs can be any clique)

If set X of inputs forms a clique in G, then $Y \subseteq X$ (otherwise set Y of outputs can be any clique)

Other validity conditions: clique validity

If set X of inputs forms a clique in G, then $Y \subseteq X$ (otherwise set Y of outputs can be any clique)

Alcántara, Castañeda, Flores-Peñaloza, and Rajsbaum (Distributed Computing 2019) robots in look-compute-move models

Comparison of validity conditions

Shortest path validity: each output on a shortest path between two inputs

Minimal path validity: Each output on a *minimal path* between inputs

Clique validity: If set X of inputs forms a clique in G, then $Y \subseteq X$

Comparison of validity conditions

Shortest path validity: each output on a shortest path between two inputs

Minimal path validity: Each output on a *minimal path* between inputs

Clique validity: If set X of inputs forms a clique in G, then $Y \subseteq X$

Nice for lower bounds!

Some other validity conditions also exist: see e.g., Alcántara et al. (2019)

On what graphs is approximate agreement wait-free solvable?

trees

cycles

bridged graphs

triangulated spheres

k-resilient: despite at most k processes crashing, correct processes terminate with correct outputs

wait-free: (n-1)-resilient

The model: asynchronous shared memory

shared memory (registers)

The model: iterated snapshot model

p₁

. . . .

shared memory (snapshot objects)

each process writes to and scans each S_i at most once

The model: iterated snapshot model

The model: iterated snapshot model

shared memory (snapshot objects)

p₁

. . . .

each process writes to and scans each S_i at most once

The model:

shared memory (snapshot objects)

and scans each S_i at most once

Scanning snapshots: the containment property

S_k

Xn

Containment property: $\{X_1\} \subseteq \{X_{1}, X_3\} \subseteq \{X_{1}, X_{2}, X_3\}$

The general algorithmic approach

- In iteration $k = 1, ..., process p_i$
- 1. writes x_i to S_k
- 2. scans S_k to obtain a set V_i
- 3. sets x_i to $g(V_i)$

- In iteration $k = 1, ..., process p_i$
- 1. writes x_i to S_k
- 2. scans S_k to obtain a set V_i
- 3. sets x_i to $g(V_i)$

In iteration $k = 1, ..., process p_i$

- 1. writes x_i to S_k
- 2. scans S_k to obtain a set V_i
- 3. sets x_i to $g(V_i)$

- In iteration $k = 1, ..., \text{ process } p_i$
- 1. writes x_i to S_k
- 2. scans S_k to obtain a set V_i
- 3. sets x_i to $g(V_i)$

In iteration $k = 1, ..., process p_i$

- 1. writes x_i to S_k
- 2. scans S_k to obtain a set V_i
- 3. sets x_i to $g(V_i)$

- In iteration $k = 1, ..., \text{ process } p_i$
- 1. writes x_i to S_k
- 2. scans S_k to obtain a set V_i
- 3. sets x_i to $g(V_i)$

In iteration $k = 1, ..., process p_i$

- 1. writes x_i to S_k
- 2. scans S_k to obtain a set V_i
- 3. sets x_i to $g(V_i)$

- In iteration $k = 1, ..., process p_i$
- 1. writes x_i to S_k
- 2. scans S_k to obtain a set V_i
- 3. sets x_i to $g(V_i)$

- In iteration $k = 1, ..., process p_i$
- 1. writes x_i to S_k
- 2. scans S_k to obtain a set V_i
- 3. sets x_i to $g(V_i)$

for suitable $g: 2^V \rightarrow V$

X2

X3

A wait-free algorithm for trees

The convex hull < U > of U consists of all vertices on shortest paths between vertices of U.

The *convex hull* < *U* > of *U* consists of all vertices on shortest paths between vertices of *U*.

The *center* of < *U* > is the *set* of vertices that minimise the maximum distance to any other node in < *U* >.

The *convex hull* < *U* > of *U* consists of all vertices on shortest paths between vertices of *U*.

The *center* of < *U* > is the *set* of vertices that minimise the maximum distance to any other node in < *U* >.

Update rule: let g(U) to be a vertex in the center of < U >

Update rule: let g(U) to be a vertex in the center of $\langle U \rangle$

Update rule: let g(U) to be a vertex in the center of < U >

Update rule: let g(U) to be a vertex in the center of < U >

Update rule: let g(U) to be a vertex in the center of < U >

Containment property: $V_{j(1)} \subseteq V_{j(2)} \subseteq \ldots \subseteq V_{j(n)}$

Update rule: let g(U) to be a vertex in the center of < U >

Containment property: $V_{j(1)} \subseteq V_{j(2)} \subseteq \ldots \subseteq V_{j(n)}$

Update rule: let g(U) to be a vertex in the center of < U >

Containment property: $V_{j(1)} \subseteq V_{j(2)} \subseteq \ldots \subseteq V_{j(n)}$

Distance is now (roughly) half of diameter of $\langle X \rangle$.

Update rule: let g(U) to be a vertex in the center of < U >

Containment property: $V_{j(1)} \subseteq V_{j(2)} \subseteq \ldots \subseteq V_{j(n)}$

Distance is now (roughly) half of diameter of < X >. Repeat with new values as input

Update rule: let g(U) to be a vertex in the center of $\langle U \rangle$

Containment property: $V_{j(1)} \subseteq V_{j(2)} \subseteq \ldots \subseteq V_{j(n)}$

Distance is now (roughly) half of diameter of < X >. Repeat with new values as input

Same idea extends:

- chordal graphs: radius $\approx 1/2 \cdot \text{diameter}$ - bridged* graphs: radius $\approx 2/3 \cdot \text{diameter}$

Wait-free solvability in other graph classes

– Paths

e.g, Biran, Moran, Zaks (1990); Attiya, Lynch, Shavit (1994); Schenk (1995)

Clique graph is a tree or has radius one Alcántara, Castañeda, Flores-Peñaloza, Rajsbaum (2019)

 Nicely bridged graphs (contains all chordal graphs) Alistarh, Ellen, Rybicki (2023)

Impossibility results for wait-free algorithms
Theorem. There is **no wait-free algorithm** for *n* > 2 processes that solves approximate agreement on cycles of length at least 4.

Castañeda, Rajsbaum, and Roy (2018)

Theorem. There is **no wait-free algorithm** for *n* > 2 processes that solves approximate agreement on cycles of length at least 4.

Corollary. Any *f*-resilient synchronous message-passing algorithm requires at least $\lfloor f/2 \rfloor + 1$ rounds.

Proof: Apply BG simulation + Gafni's round-by-round fault-detectors.

Theorem. There is **no wait-free algorithm** for *n* > 2 processes that solves approximate agreement on cycles of length at least 4.

Two flavours of proofs exist:

- Reductions from 2-set agreement e.g., Castañeda, Rajsbaum, and Roy (2018)
- Topological proofs using variants of Sperner's lemma e.g., Alistarh, Ellen, Rybicki (2023) and Liu (2022)

Theorem. There is **no wait-free algorithm** for *n* > 2 processes that solves approximate agreement on cycles of length at least 4.

Two flavours of proofs exist:

 Reductions from 2-set agreement e.g., Castañeda, Rajsbaum, and Roy (2018)

 Topological proofs using variants of Sperner's lemma e.g., Alistarh, Ellen, Rybicki (2023) and Liu (2022)

A hard problem: 2-set agreement

X ⊆ **{ 1, 2, 3 }**

- Constraints:
- validity: $Y \subseteq X$
- agreement: $|Y| \leq 2$.

A hard problem: 2-set agreement

X ⊆ { **1**, **2**, **3** }

- Constraints: validity: $Y \subseteq X$
- agreement: $|Y| \leq 2$.

Theorem.

There is no *wait-free* algorithm for 2-set agreement for n > 2.

Borowsky and Gafni (1993), Herlihy and Shavit (1999), Saks and Zaharoglou (2000)

Idea:

Suppose there is a wait-free algorithm that solves approximate agreement on **C**.

Then we can solve 2-set agreement.

Idea:

Suppose there is a wait-free algorithm that solves approximate agreement on **C**.

Then we can solve 2-set agreement.

1. Processes with inputs **{ 1, 3 }** run a wait-free algorithm for approximate agreement on the path obtained by removing the black vertex 2.

1. Processes with inputs **{ 1, 3 }** run a wait-free algorithm for approximate agreement on the path obtained by removing the black vertex 2. **Instance:**

- 1. Processes with inputs **{ 1, 3 }** run a wait-free algorithm for approximate agreement on the path obtained by removing the black vertex 2.
- 2. Then all processes run the approximate agreement protocol on the cycle.

- 1. Processes with inputs **{ 1, 3 }** run a wait-free algorithm for approximate agreement on the path obtained by removing the black vertex 2.
- 2. Then all processes run the approximate agreement protocol on the cycle.

- 1. Processes with inputs **{ 1, 3 }** run a wait-free algorithm for approximate agreement on the path obtained by removing the black vertex 2.
- 2. Then all processes run the approximate agreement protocol on the cycle.
- 3. Output the *colour* of the output vertex.

A reduction from 2-set agreement: beyond cycles

Let $L: V \rightarrow \{1, 2, 3\}$ such that

1. there is no triangle with all three colours, 2. there is a cycle C with three consecutive vertices of colour 1, 2, 3 3. there is exactly one black node on **C**

A reduction from 2-set agreement: beyond cycles

Let $L: V \rightarrow \{1, 2, 3\}$ such that

1. there is no triangle with all three colours, 2. there is a cycle C with three consecutive vertices of colour 1, 2, 3 3. there is exactly one black node on **C**

Theorem (Alistarh, Ellen, Rybicki 2023). If **G** has such an *impossibility labelling*, then there is no wait-free algorithm for approximate agreement on **G**

Holds even under clique validity.

Ledent's conjecture

The complex of cliques of **G** is the complex K(G) = (V, S), where **S** is the set of all cliques of **G**.

Ledent's conjecture (PODC 2021): Approximate agreement under clique validity is wait-free solvable on **G** if and only if **K(G)** is contractible.

Ledent's conjecture

The complex of cliques of **G** is the complex K(G) = (V, S), where **S** is the set of all cliques of **G**.

Ledent's conjecture (PODC 2021): Approximate agreement under clique validity is wait-free solvable on **G** if and only if **K(G)** is contractible.

Interesting case: triangulated spheres non-contractible complex of cliques no impossibility labelling

Are there wait-free algorithms for such graphs?

Liu's theorem

Liu (2022):

Octahedron does **not** have an impossibility labelling and does **not** have a wait-free algorithm for *n***>3** processes!

Liu's theorem

octahedron

Liu (2022):

Octahedron does **not** have an impossibility labelling and does **not** have a wait-free algorithm for **n>3** processes!

Liu's theorem:

If **G** satisfies a *k-clique containment condition*, then there is no wait-free protocol for $n > \chi(G)$ processes.

x(G): chromatic number of **G**

Liu's theorem

octahedron

Liu (2022):

Octahedron does **not** have an impossibility labelling and does **not** have a wait-free algorithm for **n>3** processes!

Liu's theorem:

For example, triangulated *d*-dimensional spheres satisfy the (d+1)-clique containment condition.

Open problem: Is there a matching upper bound?

If **G** satisfies a *k-clique containment condition*, then there is no wait-free protocol for $n > \chi(G)$ processes.

Summary

Upper bound techniques

• "iterative pruning of convex hull", works in chordal graphs and "nicely bridged" graphs: Alistarh et al. (2023)

Summary

Upper bound techniques

• "iterative pruning of convex hull", works in chordal graphs and "nicely bridged" graphs: Alistarh et al. (2023)

Lower bound techniques

- topological proofs: Alistarh et al. (2023), Liu (2022)

• reductions: Castañeda et al. (2018), Alcántara et al. (2019), Alistarh et al. (2023), Liu (2022)

What else is there?

- **Extension-based proofs**
- no "simple" impossibility proofs exist: e.g., Alistarh et al. (2021), Liu (2022), ...

What else is there?

Extension-based proofs

• no "simple" impossibility proofs exist: e.g., Alistarh et al. (2021), Liu (2022), ...

Message-passing systems with arbitrary faults

- agreement under minimal paths validity: Nowak and Rybicki (2019)
- "best-of-both-worlds": Constantinescu, Ghinea, Wattenhofer, Westermann (2023)

What else is there?

Extension-based proofs

• no "simple" impossibility proofs exist: e.g., Alistarh et al. (2021), Liu (2022), ...

Message-passing systems with arbitrary faults

- agreement under minimal paths validity: Nowak and Rybicki (2019)
- **"best-of-both-worlds":** Constantinescu, Ghinea, Wattenhofer, Westermann (2023)

Connections to other agreement problems

- robot gathering: Castañeda et al. (2018), Alcántara et al. (2019)
- simplex agreement: Ledent (2021)
- multi-valued consensus: Attiva and Welch (2023)

Open problem 1

• Characterise the class of graphs which admit wait-free algorithms for n > 2.

Open problem 1

Open problem 2

• Is there for any k > 1 some graph G_k in which approximate agreement is wait-free solvable if and only if n > k?

• Characterise the class of graphs which admit wait-free algorithms for n > 2.

Open problem 1

Open problem 2

• Is there for any k > 1 some graph G_k in which approximate agreement is wait-free solvable if and only if n > k?

Open problem 3

but admit algorithms under with minimal path/clique validity?

• Characterise the class of graphs which admit wait-free algorithms for n > 2.

Are there graphs that do not admit algorithms under shortest path validity

Open problem 1

Open problem 2

• Is there for any k > 1 some graph G_k in which approximate agreement is wait-free solvable if and only if n > k?

Open problem 3

but admit algorithms under with minimal path/clique validity?

• Characterise the class of graphs which admit wait-free algorithms for n > 2.

Are there graphs that do not admit algorithms under shortest path validity

References

- Abraham, Amit, Dolev (OPODIS 2004). https://doi.org/10.1007/11516798_17
- Alcántara, Castañeda, Flores-Peñaloza, and Rajsbaum (Distrib. Comput. 2019). <u>https://doi.org/10.1007/s00446-018-0345-3</u>
- Alistarh, Ellen, Rybicki (TCS 2023). https://doi.org/10.1016/j.tcs.2023.113733
- Attiya and Welch (DISC 2023). https://doi.org/10.4230/LIPIcs.DISC.2023.36
- Attiya, Lynch, Shavit (JACM 1994). https://doi.org/10.1145/179812.179902
- Biran, Moran, Zaks (JALG 1990). https://doi.org/10.1016/0196-6774(90)90020-F
- Borowsky and Gafni (STOC 1993). https://doi.org/10.1145/167088.167119
- Castañeda, Rajsbaum, and Roy (J Braz. Comput. Soc. 2018). https://doi.org/10.1186/s13173-017-0065-8
- Constantinescu, Ghinea, Wattenhofer, Westermann (Cryptology ePrint Archive 2023). <u>https://eprint.iacr.org/2023/1364</u>

- Dolev, Lynch, Pinter, Stark, Weihl (JACM 1986). https://doi.org/10.1145/5925.5931
- Fischer, Lynch, Paterson (JACM 1985). https://doi.org/10.1145/3149.214121
- Herlihy and Shavit (JACM 1999). https://doi.org/10.1145/331524.331529
- Ledent (PODC 2021). https://doi.org/10.1145/3465084.3467946
- Liu (OPODIS 2022). https://doi.org/10.4230/LIPIcs.OPODIS.2022.22
- Mendes, Herlihy, Vaidya, Garg (Distrib. Comput. 2015). https://doi.org/10.1007/s00446-014-0240-5
- Nowak and Rybicki (DISC 2019). https://doi.org/10.4230/LIPIcs.DISC.2019.29
- Saks and Zaharoglou (SICOMP 2000). https://doi.org/10.1137/S0097539796307698
- Schenk (FOCS 1995). https://doi.org/10.1109/SFCS.1995.492673

