Approximate agreement on graphs revisited
 ADGA 2023

Joel Rybicki
Humboldt University of Berlin

October 9, 2023

Based on joint work with:
Dan Alistarh
Faith Ellen
Thomas Nowak

Outline

1. Approximate agreement on graphs
2. Wait-free shared memory algorithms
3. Impossibility results
4. Open problems

Distributed agreement tasks

Distributed agreement tasks

Distributed agreement tasks: consensus

Distributed agreement tasks: consensus

e.g., Fischer, Lynch, Paterson (1985)

Distributed agreement tasks: approximate agreement

Distributed agreement tasks: approximate agreement over real numbers

distance $\left(y_{i}, y_{j}\right) \leq \boldsymbol{\varepsilon}$

Distributed agreement tasks: approximate agreement over real numbers

Distributed agreement tasks: approximate agreement over real numbers

distance $\left(y_{i}, y_{j}\right) \leq \boldsymbol{\varepsilon}$
e.g., Dolev, Lynch, Pinter, Stark, Weihl (1986)

Approximate agreement tasks

A fixed set \boldsymbol{V} of values

Approximate agreement tasks

A fixed set \boldsymbol{V} of values

Agreement: distance $\left(y_{i}, y_{j}\right) \leq \varepsilon$ for any $y_{i,} y_{j}$

Approximate agreement tasks

A fixed set \boldsymbol{V} of values

Agreement: distance $\left(y_{i}, y_{j}\right) \leq \varepsilon$ for any $y_{i,} y_{j}$

Validity:
$Y \subseteq<X\rangle$,

where $\langle\cdot>$ is a closure operator on \boldsymbol{V}

Approximate agreement tasks

A fixed set \boldsymbol{V} of values

Agreement: distance $\left(y_{i}, y_{j}\right) \leq \varepsilon$ for any $y_{i,} y_{j}$

Validity:
$Y \subseteq<X\rangle$,

where $<\cdot>$ is a closure operator on \boldsymbol{V}

$$
\begin{equation*}
Y=\left\{y_{1},\right. \tag{n}
\end{equation*}
$$

$$
5 / 2
$$

Approximate agreement tasks

A fixed set \boldsymbol{V} of values
Agreement: distance $\left(y_{i}, y_{j}\right) \leq \varepsilon$ for any $y_{i,} y_{j}$

Validity:
$Y \subseteq\langle X\rangle$,
where $<\cdot>$ is a closure operator on \boldsymbol{V}

= "outputs are close to one another and reside in some closure of the input values"

e.g., Dolev, Lynch, Pinter, Stark, Weihl (1986)

Abraham, Amit, Dolev (2004)
approximate agreement over reals

Approximate agreement tasks

A fixed set \boldsymbol{V} of values

Agreement: distance $\left(y_{i}, y_{j}\right) \leq \varepsilon$ for any $y_{i,} y_{j}$

Validity:
$Y \subseteq<X\rangle$,
where $<\cdot>$ is a closure operator on \boldsymbol{V}
= "outputs are close to one another and reside in some closure of the input values"

Approximate agreement tasks

A fixed set \boldsymbol{V} of values
Agreement: distance $\left(y_{i}, y_{j}\right) \leq \varepsilon$ for any $y_{i,} y_{j}$

Validity:

$Y \subseteq\langle X\rangle$,
where $<\cdot>$ is a closure operator on \boldsymbol{V}
= "outputs are close to one another and reside in some closure of the input values"

e.g. Nowak and Rybicki (DISC 2019)
approximate agreement on graphs and lattices

Approximate agreement on graphs

Inputs and outputs are vertices of a fixed graph \boldsymbol{G}

G

Approximate agreement on graphs

Inputs and outputs are vertices of a fixed graph \boldsymbol{G}

Agreement:

outputs form a clique of \boldsymbol{G}

G

Approximate agreement on graphs

Inputs and outputs are vertices of a fixed graph \boldsymbol{G}

Agreement:

outputs form a clique of \mathbf{G}
Shortest path validity:
each output on a shortest path between two inputs

G

Approximate agreement on graphs

Inputs and outputs are vertices of a fixed graph \boldsymbol{G}

Agreement:

outputs form a clique of \mathbf{G}
Shortest path validity:
each output on a shortest path between two inputs

Approximate agreement on graphs

Inputs and outputs are vertices of a fixed graph \boldsymbol{G}

Agreement:

outputs form a clique of \mathbf{G}
Shortest path validity:
each output on a shortest path between two inputs

Approximate agreement on graphs

Inputs and outputs are vertices of a fixed graph \boldsymbol{G}

Agreement:

outputs form a clique of \mathbf{G}
Shortest path validity:
each output on a shortest path between two inputs

Approximate agreement on graphs

Inputs and outputs are vertices of a fixed graph \boldsymbol{G}

Agreement:

outputs form a clique of \boldsymbol{G}
Shortest path validity:
each output on a shortest path between two inputs

G

Approximate agreement on graphs

Inputs and outputs are vertices of a fixed graph \boldsymbol{G}

Agreement:

outputs form a clique of \boldsymbol{G}
Shortest path validity:
each output on a shortest path between two inputs

Approximate agreement on graphs

Inputs and outputs are vertices of a fixed graph \boldsymbol{G}

Agreement:

outputs form a clique of \boldsymbol{G}
Shortest path validity:
each output on a shortest path between two inputs

Approximate agreement on graphs

Inputs and outputs are vertices of a fixed graph \mathbf{G}

Agreement:

outputs form a clique of \boldsymbol{G}
Shortest path validity:
each output on a shortest path between two inputs

Other validity conditions: minimal path validity

Each output on a minimal path between inputs

 (every path that is an induced path in \boldsymbol{G})
Other validity conditions: minimal path validity

Each output on a minimal path between inputs

 (every path that is an induced path in \boldsymbol{G})

Other validity conditions: minimal path validity

Each output on a minimal path between inputs (every path that is an induced path in \boldsymbol{G})

Other validity conditions: minimal path validity

Each output on a minimal path between inputs (every path that is an induced path in \boldsymbol{G})

Other validity conditions: minimal path validity

Each output on a minimal path between inputs (every path that is an induced path in \boldsymbol{G})

Other validity conditions: clique validity

Other validity conditions: clique validity

If set X of inputs forms a clique in \mathbf{G}, then $Y \subseteq X$ (otherwise set Y of outputs can be any clique)

Alcántara, Castañeda, Flores-Peñaloza, and Rajsbaum (Distributed Computing 2019) robots in look-compute-move models

Other validity conditions: clique validity

If set X of inputs forms a clique in \mathbf{G}, then $Y \subseteq X$ (otherwise set Y of outputs can be any clique)

Alcántara, Castañeda, Flores-Peñaloza, and Rajsbaum (Distributed Computing 2019) robots in look-compute-move models

Other validity conditions: clique validity

If set X of inputs forms a clique in \mathbf{G}, then $Y \subseteq X$ (otherwise set Y of outputs can be any clique)

Alcántara, Castañeda, Flores-Peñaloza, and Rajsbaum (Distributed Computing 2019) robots in look-compute-move models

Other validity conditions: clique validity

If set X of inputs forms a clique in \mathbf{G}, then $Y \subseteq X$ (otherwise set Y of outputs can be any clique)

Alcántara, Castañeda, Flores-Peñaloza, and Rajsbaum (Distributed Computing 2019) robots in look-compute-move models

Comparison of validity conditions

Shortest path validity:

each output on a shortest path between two inputs

Minimal path validity:

Each output on a minimal path between inputs

Clique validity:
If set X of inputs forms a clique in G, then $Y \subseteq X$

Comparison of validity conditions

Shortest path validity:

each output on a shortest path between two inputs

Nice for upper bounds!

Minimal path validity:

Each output on a minimal path between inputs

Clique validity:
If set X of inputs forms a clique in G, then $Y \subseteq X$
Nice for lower bounds!

On what graphs is approximate agreement wait-free solvable?

trees

cycles

bridged graphs

triangulated spheres

k-resilient: despite at most k processes crashing, correct processes terminate with correct outputs
wailt-free: ($n-1$)-resilient

The model: asynchronous shared memory

$$
\begin{aligned}
& \begin{array}{lll}
p_{1} & p_{2} & p_{n}
\end{array} \\
& \text { - © }
\end{aligned}
$$

shared memory (registers)

The model: iterated snapshot model

shared memory (snapshot objects)

each process writes to

The model: iterated snapshot model

The model: iterated snapshot model

shared memory (snapshot objects)
each process writes to

and scans each S_{i} at most once

The model: iterated snapshot model

shared memory (snapshot objects)
each process writes to

and scans each S_{i} at most once

Scanning snapshots: the containment property

Containment property: $\left\{x_{1}\right\} \subseteq\left\{x_{1}, x_{3}\right\} \subseteq\left\{x_{1}, x_{2}, x_{3}\right\}$
S_{k}

The general algorithmic approach

The general shape of algorithms

In iteration $k=1, \ldots$, process $\boldsymbol{p}_{\boldsymbol{i}}$

1. writes x_{i} to S_{k}
2. scans $\mathbf{S}_{\boldsymbol{k}}$ to obtain a set $\boldsymbol{V}_{\boldsymbol{i}}$
3. sets x_{i} to $g\left(V_{i}\right)$
for suitable $g: 2^{V} \rightarrow V$

The general shape of algorithms

In iteration $k=1, \ldots$, process $\boldsymbol{p}_{\boldsymbol{i}}$

1. writes x_{i} to S_{k}
2. scans $\boldsymbol{S}_{\boldsymbol{k}}$ to obtain a set $\boldsymbol{V}_{\boldsymbol{i}}$
3. sets x_{i} to $g\left(V_{i}\right)$
for suitable $g: 2^{V} \rightarrow V$

The general shape of algorithms

In iteration $k=1, \ldots$, process $\boldsymbol{p}_{\boldsymbol{i}}$

1. writes x_{i} to $\boldsymbol{S}_{\boldsymbol{k}}$
2. scans $\mathbf{S}_{\boldsymbol{k}}$ to obtain a set $\boldsymbol{V}_{\boldsymbol{i}}$
3. sets x_{i} to $g\left(V_{i}\right)$
for suitable $g: 2^{V} \rightarrow V$

S_{k}

The general shape of algorithms

In iteration $k=1, \ldots$, process $\boldsymbol{p}_{\boldsymbol{i}}$

1. writes x_{i} to $\boldsymbol{S}_{\boldsymbol{k}}$
2. scans $\boldsymbol{S}_{\boldsymbol{k}}$ to obtain a set $\boldsymbol{V}_{\boldsymbol{i}}$
3. sets x_{i} to $g\left(V_{i}\right)$
for suitable $g: 2^{V} \rightarrow V$

S_{k}

The general shape of algorithms

In iteration $k=1, \ldots$, process $\boldsymbol{p}_{\boldsymbol{i}}$

1. writes x_{i} to $\boldsymbol{S}_{\boldsymbol{k}}$
2. scans $\mathbf{S}_{\boldsymbol{k}}$ to obtain a set $\boldsymbol{V}_{\boldsymbol{i}}$
3. sets x_{i} to $g\left(V_{i}\right)$
for suitable $g: 2^{V} \rightarrow V$

The general shape of algorithms

In iteration $k=1, \ldots$, process \boldsymbol{p}_{i}

1. writes x_{i} to $\boldsymbol{S}_{\boldsymbol{k}}$
2. scans $\boldsymbol{S}_{\boldsymbol{k}}$ to obtain a set $\boldsymbol{V}_{\boldsymbol{i}}$
3. sets x_{i} to $g\left(V_{i}\right)$
for suitable $g: 2^{V} \rightarrow V$

S_{k}

The general shape of algorithms

S_{k}

In iteration $k=1, \ldots$, process $\boldsymbol{p}_{\boldsymbol{i}}$

1. writes x_{i} to $\boldsymbol{S}_{\boldsymbol{k}}$
2. scans $\boldsymbol{S}_{\boldsymbol{k}}$ to obtain a set $\boldsymbol{V}_{\boldsymbol{i}}$
3. sets x_{i} to $g\left(V_{i}\right)$
for suitable $g: 2^{V} \rightarrow V$

The general shape of algorithms

In iteration $k=1, \ldots$, process \boldsymbol{p}_{i}

1. writes x_{i} to $\boldsymbol{S}_{\boldsymbol{k}}$
2. scans $\mathbf{S}_{\boldsymbol{k}}$ to obtain a set $\boldsymbol{V}_{\boldsymbol{i}}$
3. sets x_{i} to $g\left(V_{i}\right)$
for suitable $g: 2^{V} \rightarrow V$

The general shape of algorithms

In iteration $k=1, \ldots$, process \boldsymbol{p}_{i}

1. writes x_{i} to $\boldsymbol{S}_{\boldsymbol{k}}$
2. scans $\mathbf{S}_{\boldsymbol{k}}$ to obtain a set $\boldsymbol{V}_{\boldsymbol{i}}$
3. sets x_{i} to $g\left(V_{i}\right)$
for suitable $g: 2^{V} \rightarrow V$

A wait-free algorithm for trees

Algorithm for trees

Algorithm for trees

The convex hull $<U>$ of U consists of all vertices on shortest paths between vertices of U.

Algorithm for trees

The convex hull $<U>$ of U consists of all vertices on shortest paths between vertices of U.

The center of < U > is the set of vertices that minimise the maximum distance to any other node in $\langle U\rangle$.

Algorithm for trees

The convex hull $<U>$ of U consists of all vertices on shortest paths between vertices of U.

The center of $\langle U\rangle$ is the set of vertices that minimise the maximum distance to any other node in $\langle\boldsymbol{U}\rangle$.

Update rule:

 let $g(U)$ to be a vertex in the center of $\langle U\rangle$

Algorithm for trees

Update rule:

let $g(U)$ to be a vertex in the center of $\langle U\rangle$

Algorithm for trees

Update rule:

let $g(U)$ to be a vertex in the center of $\langle U\rangle$

Algorithm for trees

Update rule:

let $g(U)$ to be a vertex in the center of $\langle U\rangle$

Algorithm for trees

Update rule:

 let $g(U)$ to be a vertex in the center of $\langle U\rangle$Containment property:
$V_{j(1)} \subseteq V_{j(2)} \subseteq \ldots \subseteq V_{j(n)}$

Algorithm for trees

Update rule:

 let $g(U)$ to be a vertex in the center of $\langle U\rangle$Containment property:
$V_{j(1)} \subseteq V_{j(2)} \subseteq \ldots \subseteq V_{j(n)}$

Algorithm for trees

Update rule:

 let $g(U)$ to be a vertex in the center of $\langle U\rangle$

Containment property:
$V_{j(1)} \subseteq V_{j(2)} \subseteq \ldots \subseteq V_{j(n)}$
Distance is now (roughly) half of diameter of $\langle X\rangle$.

Algorithm for trees

Update rule:

 let $g(U)$ to be a vertex in the center of $\langle U\rangle$Containment property:
$V_{j(1)} \subseteq V_{j(2)} \subseteq \ldots \subseteq V_{j(n)}$
Distance is now (roughly) half of diameter of $\langle X\rangle$. Repeat with new values as input

Algorithm for trees

Update rule:

let $g(U)$ to be a vertex in the center of $\langle U\rangle$
Containment property:
$V_{j(1)} \subseteq V_{j(2)} \subseteq \ldots \subseteq V_{j(n)}$
Distance is now (roughly) half of diameter of $\langle X\rangle$. Repeat with new values as input

Same idea extends:

- chordal graphs: radius $\approx 1 / 2 \cdot$ diameter

- bridged* graphs: radius $\approx 2 / 3 \cdot$ diameter

Wait-free solvability in other graph classes

- Paths
e.g, Biran, Moran, Zaks (1990); Attiya, Lynch, Shavit (1994); Schenk (1995)
- Clique graph is a tree or has radius one Alcántara, Castañeda, Flores-Peñaloza, Rajsbaum (2019)

- Nicely bridged graphs (contains all chordal graphs) Alistarh, Ellen, Rybicki (2023)

Impossibility results for wait-free algorithms

Impossibility on cycles

Theorem. There is no wait-free algorithm for $\boldsymbol{n}>\mathbf{2}$ processes that solves approximate agreement on cycles of length at least 4.

Castañeda, Rajsbaum, and Roy (2018)

Impossibility on cycles

Theorem. There is no wait-free algorithm for $\boldsymbol{n} \mathbf{>} \mathbf{2}$ processes that solves approximate agreement on cycles of length at least 4.

Corollary. Any f-resilient synchronous message-passing algorithm requires at least $\lfloor f / 2\rfloor+1$ rounds.

Proof: Apply BG simulation + Gafni's round-by-round fault-detectors.

Impossibility on cycles

Theorem. There is no wait-free algorithm for $\boldsymbol{n} \mathbf{>} \mathbf{2}$ processes that solves approximate agreement on cycles of length at least 4.

Two flavours of proofs exist:

- Reductions from 2-set agreement e.g., Castañeda, Rajsbaum, and Roy (2018)
- Topological proofs using variants of Sperner's lemma e.g., Alistarh, Ellen, Rybicki (2023) and Liu (2022)

Impossibility on cycles

Theorem. There is no wait-free algorithm for $\boldsymbol{n} \mathbf{>} \mathbf{2}$ processes that solves approximate agreement on cycles of length at least 4.

Two flavours of proofs exist:

- Reductions from 2-set agreement e.g., Castañeda, Rajsbaum, and Roy (2018)
- Topological proofs using variants of Sperner's lemma e.g., Alistarh, Ellen, Rybicki (2023) and Liu (2022)

A hard problem: 2-set agreement

$X \subseteq\{1,2,3\}$
Constraints:

- validity: $Y \subseteq X$
- agreement: | $Y \mid \leq 2$.

A hard problem: 2-set agreement

$X \subseteq\{1,2,3\}$

Constraints:

- validity: $Y \subseteq X$
- agreement: $|Y| \leq 2$.

Theorem.

There is no wait-free algorithm for 2 -set agreement for $\mathrm{n}>2$.

Borowsky and Gafni (1993), Herlihy and Shavit (1999), Saks and Zaharoglou (2000)

A reduction from 2-set agreement

Idea:

Suppose there is a wait-free algorithm that solves approximate agreement on \boldsymbol{C}.

Then we can solve 2-set agreement.

C

A reduction from 2-set agreement

Idea:

Suppose there is a wait-free algorithm that solves approximate agreement on \boldsymbol{C}.

Then we can solve 2-set agreement.

C

A reduction from 2-set agreement

1. Processes with inputs $\{1,3\}$ run a wait-free algorithm for approximate agreement on the path obtained by removing the black vertex 2.

C

A reduction from 2-set agreement

1. Processes with inputs $\{1,3\}$ run a wait-free algorithm for approximate agreement on the path obtained by removing the black vertex 2 .

A reduction from 2-set agreement

1. Processes with inputs $\{1,3\}$ run a wait-free algorithm for approximate agreement on the path obtained by removing the black vertex 2.
2. Then all processes run the approximate agreement protocol on the cycle.

A reduction from 2-set agreement

1. Processes with inputs $\{1,3\}$ run a wait-free algorithm for approximate agreement on the path obtained by removing the black vertex 2.
2. Then all processes run the approximate agreement protocol on the cycle.

A reduction from 2-set agreement

1. Processes with inputs $\{1,3\}$ run a wait-free algorithm for approximate agreement on the path obtained by removing the black vertex 2.
2. Then all processes run the approximate agreement protocol on the cycle.

3. Output the colour of the output vertex.

A reduction from 2-set agreement: beyond cycles

Let $\boldsymbol{L}: \boldsymbol{V} \rightarrow\{\mathbf{1 , 2 , 3} 3$ such that

1. there is no triangle with all three colours,
2. there is a cycle \boldsymbol{C} with three consecutive vertices of colour 1,2,3
3. there is exactly one black node on \boldsymbol{C}

A reduction from 2-set agreement: beyond cycles

Let $\boldsymbol{L}: \boldsymbol{V} \boldsymbol{\rightarrow} \mathbf{1 , 2 , 3} \mathbf{3}$ such that

1. there is no triangle with all three colours,
2. there is a cycle \boldsymbol{C} with three consecutive vertices of colour 1,2,3
3. there is exactly one black node on \mathbf{C}

Theorem (Alistarh, Ellen, Rybicki 2023).
If \boldsymbol{G} has such an impossibility labelling, then there is no wait-free algorithm for approximate agreement on \boldsymbol{G}

Holds even under clique validity.

Ledent's conjecture

The complex of cliques of \boldsymbol{G} is the complex $\boldsymbol{K}(\mathbf{G})=(\boldsymbol{V}, S)$, where S is the set of all cliques of \boldsymbol{G}.

G

Ledent's conjecture (PODC 2021):
Approximate agreement under clique validity is wait-free solvable on \boldsymbol{G} if and only if $\boldsymbol{K}(\boldsymbol{G})$ is contractible.

Ledent's conjecture

The complex of cliques of \boldsymbol{G} is the complex $\boldsymbol{K}(\mathbf{G})=(\boldsymbol{V}, S)$, where S is the set of all cliques of \mathbf{G}.

G

Ledent's conjecture (PODC 2021):
Approximate agreement under clique validity is wait-free solvable on \boldsymbol{G} if and only if $\boldsymbol{K}(\boldsymbol{G})$ is contractible.

$K(G)$

Interesting case: triangulated spheres

- non-contractible complex of cliques
- no impossibility labelling

Are there wait-free algorithms for such graphs?

Liu's theorem

Liu (2022):
Octahedron does not have an impossibility labelling and does not have a wait-free algorithm for $\boldsymbol{n}>\mathbf{3}$ processes!
octahedron

Liu's theorem

octahedron

Liu (2022):
Octahedron does not have an impossibility labelling and does not have a wait-free algorithm for $\boldsymbol{n} \boldsymbol{>} \mathbf{3}$ processes!

Liu's theorem:
If \boldsymbol{G} satisfies a k-clique containment condition, then there is no wait-free protocol for $\boldsymbol{n}>\boldsymbol{\chi}(G)$ processes.
$X(\mathbf{G})$: chromatic number of \boldsymbol{G}

Liu's theorem

octahedron

Liu (2022):
Octahedron does not have an impossibility labelling and does not have a wait-free algorithm for $\boldsymbol{n}>\mathbf{3}$ processes!

Liu's theorem: If \boldsymbol{G} satisfies a k-clique containment condition, then there is no wait-free protocol for $\boldsymbol{n} \boldsymbol{>} \boldsymbol{\chi}(\mathbf{G})$ processes.

For example, triangulated d-dimensional spheres satisfy the ($d+1$)-clique containment condition.

Open problem: Is there a matching upper bound?

Summary

Upper bound techniques

- "iterative pruning of convex hull", works in chordal graphs and "nicely bridged" graphs: Alistarh et al. (2023)

Summary

Upper bound techniques

- "iterative pruning of convex hull", works in chordal graphs and "nicely bridged" graphs: Alistarh et al. (2023)

Lower bound techniques

- reductions: Castañeda et al. (2018), Alcántara et al. (2019), Alistarh et al. (2023), Liu (2022)
- topological proofs: Alistarh et al. (2023), Liu (2022)

What else is there?

Extension-based proofs

- no "simple" impossibility proofs exist: e.g., Alistarh et al. (2021), Liu (2022), ...

What else is there?

Extension-based proofs

- no "simple" impossibility proofs exist: e.g., Alistarh et al. (2021), Liu (2022), ...

Message-passing systems with arbitrary faults

- agreement under minimal paths validity: Nowak and Rybicki (2019)
- "best-of-both-worlds"": Constantinescu, Ghinea, Wattenhofer, Westermann (2023)

What else is there?

Extension-based proofs

- no "simple" impossibility proofs exist: e.g., Alistarh et al. (2021), Liu (2022), ...

Message-passing systems with arbitrary faults

- agreement under minimal paths validity: Nowak and Rybicki (2019)
- "best-of-both-worlds": Constantinescu, Ghinea, Wattenhofer, Westermann (2023)

Connections to other agreement problems

- robot gathering: Castañeda et al. (2018), Alcántara et al. (2019)
- simplex agreement: Ledent (2021)
- multi-valued consensus: Attiya and Welch (2023)

Open problems

Open problem 1

- Characterise the class of graphs which admit wait-free algorithms for $n>2$.

Open problems

Open problem 1

- Characterise the class of graphs which admit wait-free algorithms for $n>2$.

Open problem 2

- Is there for any $k>1$ some graph $\boldsymbol{G}_{\boldsymbol{k}}$ in which approximate agreement is wait-free solvable if and only if $n>k$?

Open problems

Open problem 1

- Characterise the class of graphs which admit wait-free algorithms for $n>2$.

Open problem 2

- Is there for any $k>1$ some graph $\boldsymbol{G}_{\boldsymbol{k}}$ in which approximate agreement is wait-free solvable if and only if $n>k$?

Open problem 3

- Are there graphs that do not admit algorithms under shortest path validity but admit algorithms under with minimal path/clique validity?

Open problems

Open problem 1

- Characterise the class of graphs which admit wait-free algorithms for $n>2$.

Open problem 2

- Is there for any $k>1$ some graph $\boldsymbol{G}_{\boldsymbol{k}}$ in which approximate agreement is wait-free solvable if and only if $n>k$?

Open problem 3

- Are there graphs that do not admit algorithms under shortest path validity but admit algorithms under with minimal path/clique validity?

References

- Abraham, Amit, Dolev (OPODIS 2004). https://doi.org/10.1007/11516798 17
- Alcántara, Castañeda, Flores-Peñaloza, and Rajsbaum (Distrib. Comput. 2019). https://doi.org/10.1007/s00446-018-0345-3
- Alistarh, Ellen, Rybicki (TCS 2023). https://doi.org/10.1016/j.tcs.2023.113733
- Attiya and Welch (DISC 2023). https://doi.org/10.4230/LIPIcs.DISC.2023.36
- Attiya, Lynch, Shavit (JACM 1994). https://doi.org/10.1145/179812.179902
- Biran, Moran, Zaks (JALG 1990).
https://doi.org/10.1016/0196-6774(90)90020-F
- Borowsky and Gafni (STOC 1993). https://doi.org/10.1145/167088.167119
- Castañeda, Rajsbaum, and Roy (J Braz. Comput. Soc. 2018). https://doi.org/10.1186/s13173-017-0065-8
- Constantinescu, Ghinea, Wattenhofer, Westermann (Cryptology ePrint Archive 2023). https://eprint.iacr.org/2023/1364
- Dolev, Lynch, Pinter, Stark, Weihl (JACM 1986). https://doi.org/10.1145/5925.5931
- Fischer, Lynch, Paterson (JACM 1985). https://doi.org/10.1145/3149.214121
- Herlihy and Shavit (JACM 1999). https://doi.org/10.1145/331524.331529
- Ledent (PODC 2021). https://doi.org/10.1145/3465084.3467946
- Liu (OPODIS 2022).
https://doi.org/10.4230/LIPIcs.OPODIS.2022.22
- Mendes, Herlihy, Vaidya, Garg (Distrib. Comput. 2015).
https://doi.org/10.1007/s00446-014-0240-5
- Nowak and Rybicki (DISC 2019). https://doi.org/10.4230/LIPIcs.DISC.2019.29
- Saks and Zaharoglou (SICOMP 2000). https://doi.org/10.1137/S0097539796307698
- Schenk (FOCS 1995). https://doi.org/10.1109/SFCS.1995.492673

